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A B S T R A C T   

As a significant extension of data envelopment analysis studies, cross-efficiency has been commenly adopted to 
rank the performances of decision-making units (DMUs). Interval cross-efficiency techniques can solve the 
nonuniqueness problem by considering all possible weight sets in weight space. Most existing cross-efficiency 
approaches employ the average cross-efficiency to aggregate the cross-efficiency matrix (CEM), but the 
consensus preferences among DMUs acquire little consideration. In this paper, we develop a new integrated 
ranking technique for cross-efficiency intervals. Cross-efficiency methods with crisp and interval input–output 
data are used to construct generalized interval CEMs. The cross-efficiency intervals are projected into two- 
dimensional coordinates, and the optimal rally point is generated using the plant growth simulation algorithm 
to solve the generalized Fermat-Torricelli problem. A possibility distribution function is applied to transform the 
aggregated interval CEMs, and then we obtain the ultimate cross-efficiency rankings of all DMUs. Two illus
trations are provided to demonstrate the validity of the proposed approach.   

1. Introduction 

Data envelopment analysis (DEA), initially developed by Charnes, 
Cooper, and Rhodes (1978), is deemed as a linear and nonparametric 
programming approach for evaluating the relative efficiency of decision- 
making units (DMUs). Over the past 40 years, DEA has been considered a 
leading technique for the recognition of best practice, and various 
implementations of this approach have been adopted (Cook & Seiford, 
2009; Emrouznejad & Yang, 2018; Liu, Lu, Lu, & Lin, 2013; Wu, Sun, & 
Liang, 2021). Ranking DMUs is one of the most important applications of 
DEA, and different ranking methods and experimental comparisons are 
also provided by Labijak-Kowalska and Kadziński (2021). However, the 
performance assessment with the CCR model (Charnes et al., 1978) is 
based on self-evaluation and may suffer poor discrimination, in that 
many DMUs may be scored as efficient and therefore have the same 
ranking. To achieve better discrimination, cross-efficiency evaluation, 
by the way of peer-evaluation, has been introduced (Sexton, Silkman, & 
Hogan, 1986). This technique utilize the weights of all the other units to 
assesses each DMU instead of its own weights only. The main advantage 
of cross-efficiency approach lies in its capacity to generate a complete 
ranking of DMUs and eliminate unrealistic weight schemes (Adler, 

Friedman, & Sinuany-Stern, 2002; Oukil & Amin, 2015). 
However, the possible nonuniqueness of the optimal weight scheme 

derived by the traditional DEA model could limit the utility of the cross- 
efficiency approach. To address this problem, alternative secondary 
goals were adopted by indirectly placing external requirements on the 
cross-efficiency evaluation to obtain a more robust set of optimal 
weights. Doyle and Green (1994) proposed the well-known benevolent 
and aggressive models, and then various secondary objective functions 
were introduced in cross-efficiency models (Liang, Wu, Cook, & Zhu, 
2008a; Lim, 2012; Wang & Chin, 2010b). To avoid the dilemma of 
strategy selection, Ramón, Ruiz, and Sirvent (2010) and Wang and Chin 
(2010a) determined each DMU’s weight only from its own perspective, 
neglecting their possible impact on the other units, to make the evalu
ation more neutral. Furthermore, cross-efficiency models based on ideal 
and anti-ideal virtual DMUs (Wang, Chin, & Luo, 2011) and the weight 
balanced approach (Wu, Sun, & Liang, 2012) were also proposed to 
pursue neutrality. Liang, Wu, Cook, and Zhu (2008b) introduced game 
theory into cross-efficiency evaluation, finding that the uncertainty 
problem in implementing the weight value mechanism is solved by the 
equilibrium solution. The literature contains an abundance of related 
publications on game cross-efficiency evaluation (Essid, Ganouati, & 

; DEA, Data envelopment analysis; CEM, Cross-efficiency matrix; DMUs, Decision-making units; DMs, Decision-makers; PGSA, Plant growth simulation algorithm. 
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Vigeant, 2018; Liu, Wang, & Lv, 2017; Wu, Liang, & Chen, 2009; Wu, 
Liang, & Yang, 2009; Wu, Liang, Yang, & Yan, 2009). In addition, based 
on game-like iterative algorithm, Li, Zhu, Chen, and Xue (2018) pro
posed the balanced cross-efficiency evaluation approach. 

In real-life evaluation problems, imprecise data exists due to uncer
tainty and incompleteness. The interval DEA technique can deal with 
this problem, using inputs and outputs that are intervals or fuzzy 
numbers. A generalized DEA model with interval input–output data 
(Jahanshahloo, Hosseinzadeh Lotfi, Rostamy Malkhalifeh, & Ahadzadeh 
Namin, 2009), a pair of improved interval DEA models (Azizi & Jahed, 
2011), and an extended SBM model with interval input–output data 
(Inuiguchi & Mizoshita, 2012) were carried out by scholars. An, Meng, 
and Xiong (2018) used the DEA/AHP approach to fully rank DMUs in 
interval cross-efficiency. In this paper, the cross-efficiency technique is 
adopted based on interval input–output data and returns an interval 
cross-efficiency scores. That is, the cross-efficiency scores of each DMU 
is deemed as an interval, and the results derived by benevolent and 
aggressive formulations are the lower and upper limit points of the in
terval (Yang, Ang, Xia, & Yang, 2012). By doing so, the cross-efficiency 
model with interval input–output data can be solved, and nonunique
ness of weight sets can also be effectively avoided. When the interval 
cross-efficiency matrix (CEM) is obtained, another issue is to aggregate 
the interval CEM and rank all DMUs. To date, several scholars have been 
engaged in this issue. 

The minimax regret-based approach (Wang, Greatbanks, & Yang, 
2005), geometric average method (Wang, Chin, & Yang, 2007), and 
Hurwicz criterion approach (Wang & Yang, 2007) were introduced to 
rank the interval efficiencies of all DMUs. Wu, Sun, Song, and Liang 
(2013) ranked DMUs with interval data using cross-efficiency and 
TOPSIS methods. Wang, Li, and Hong (2016) proposed using a distance 
entropy model for the weights determination of interval cross- 
efficiencies and then ranked DMUs by relative Euclidean distance 
from the positive solution. Yu and Hou (2016) introduced the optimistic 
coefficient based on a compromise rule to reflect the optimism degree of 
the decision-maker (DM) in interval cross-efficiency evaluation. Yu, 
Zhu, and Zhang (2019) extended the interval cross-efficiency model of 
Yang et al. (2012) based on interval data. Liu and Wang (2018) used the 
lower and upper bounds of the normalized efficiency, from the pessi
mistic and optimistic viewpoints, to obtain interval efficiencies. Liu 
(2018) created a strategy for integrating cross-efficiency intervals with 
the signal-to-noise ratio index. Fang and Yang (2019) aggregated cross- 
efficiency intervals based on cumulative prospect theory, and the 
aggregated weights were derived from the similarity measure. Based on 
the research of Yang, Yang, Liu, & Li, 2013; Zhang, Xia, Yang, Song, & 
Ang, 2021 proposed the stochastic multicriteria acceptability analysis- 
evidential reasoning approach for the aggregation of interval cross- 
efficiency. 

Though several methods mentioned above have been proposed to 
aggregate the interval CEM, the consensus preferences in the group 
decision making process is neglected. Cross-efficiency method allows all 
DMUs to carry out self-evaluation and peer-evaluation, thus it is 
essentially a special group evaluation. DEA technique can be adopted to 
find appropriate weights to aggregate the opinion of all experts to form 
the final decision (Liu, Fang, & Chen, 2020; Liu, Song, Xu, Tao, & Chen, 
2019). Consensus refers to the tendency of individuals in group evalu
ation to be consistent (or similar) in their opinions on the evaluation 
object (Wu, Zhao, Sun, & Fujita, 2021). The consensus of group mem
bers on evaluation opinions is crucial to the rationality of evaluation 
results (Tang, Wan, Li, Liang, & Dong, 2021). In fact, the n DMUs to be 
ranked can be treated as n alternatives, and the optimal weight sets 

recommended by the DMUs can be considered as attributions. Then, the 
individual opinions can be aggregated into a collective one (Cao, Wu, 
Chiclana, Ureña, & Herrera-Viedma, 2019). Draw on the ideas of group 
consensus reaching in the process of group decision making (Cao, Wu, 
Chiclana, & Herrera-Viedma, 2021), we design a mechanism to make all 
DMUs reach a consensus in the process of interval CEM aggregation, that 
is, considering the possibility of all DMUs accepting the ranking. Be
sides, traditional linear aggregation method assumes that DM’s prefer
ence satisfies the “additive independence” condition, which is very strict 
and difficult to achieve in the actual decision-making process. 

To fill this gap, this paper uses the plant growth simulation algorithm 
(PGSA) to generate the generalized Fermat-Torricelli point, which is the 
optimal rally point that reflects the consensus preferences of all DMs. Li, 
Wang, Wang, and Su (2005) proposed PGSA and opened up a new field 
of research on nonparametric intelligent optimization algorithms, which 
are heuristic algorithms based on the plant growth mechanism. PGSA 
has an ideal search mechanism with directional and random equilib
rium, which is determined by the morphogen concentration and can find 
the global optimal solution at a relatively fast speed. Recently, Li and 
Wang (2020) provided a comprehensive review of PGSA in terms of 
theory and application, and PGSA has been applied widely in the area of 
decision optimization. Li, Xie, and Guo (2014) firstly applied PGSA to 
gather preference information on each attribute of a group decision 
making preference interval, finding that more valuable information can 
be retained from all experts without distortion. Liu and Li (2015) 
determined the integrated weights of DMs using PGSA based on group 
decision matrices with interval number. Qiu and Li (2017) employed 
PGSA to determine the optimal rally points, and then created an expert 
preference aggregation matrix. Other discussions related to the appli
cation of PGSA can be found in the following studies (e.g., Li & Zhang, 
2018, 2019; Qiu & Li, 2019; Zong, Shen, & Chen, 2019). 

The average cross-efficiency is often used for cross-efficiency ag
gregation in existing approaches. Numerous models exist and focus on 
how to determine unique input–output weights. Some scholars have 
introduced behavioral decision making techniques into cross-efficiency 
framework, such as satisfaction and consensus degree (Wu, Wang, Liu, & 
Wu, 2021), management objectives (Shi, Chen, Wang, & Huang, 2021), 
reciprocal behaviors (Li, Wu, Zhu, Liang, & Kou, 2021), fairness utility 
(Zhu, Li, Wu, & Sun, 2021), and preference structure and acceptability 
analysis (Fu & Li, 2022). However, the literature considers little about 
the consensus preferences among DMUs in the aggregation process of 
cross-efficiency. In addition, the consensus of group members is one of 
the evaluation criteria for the credibility of group evaluation results. It is 
inevitable for us to solve the group decision DEA problem (Kao & Liu, 
2021). So, considering consensus preference among all DMUs, the 
objective of this paper is to construct a new integrated ranking approach 
for cross-efficiency intervals based on the generalized Fermat-Torricelli 
point and possibility distribution function. 

The main contributions of this paper can be summarized as follows. 
(1) General models for solving cross-efficiency evaluation with crisp or 
interval data are illustrated. We consider all possible weights bounded 
by the benevolent and aggressive formulations, thus the nonuniqueness 
of weight sets can also be effectively avoided. (2) This is the first attempt 
to introduce PGSA into interval CEM aggregation by solving the 
generalized Fermat-Torricelli problem. We treat the process of interval 
cross-efficiency aggregation as consensus reaching process of DMUs. The 
optimal rally point represents the aggregated interval CEM in two 
dimensional coordinates. (3) Possibility distribution functions are used 
to rank the aggregated interval CEM based on the possibility degree. We 
use interval number ranking method to determine the final ranking of all 
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DMUs. 
The remainder of the paper is structured as follows. Section 2 pre

sents the preliminaries about cross-efficiency evaluation with crisp or 
interval data. Section 3 describes the proposed aggregation approach for 
interval CEM. Procedures for the new integrated ranking approach are 
provided in Section 4. Section 5 illustrates the method with two nu
merical examples. Section 6 contains concluding remarks and sugges
tions for possible future directions. 

2. Preliminaries 

2.1. Cross-efficiency evaluation with crisp data 

Suppose that each DMUj(j = 1, 2, ..., n) consumes xij(i = 1, 2, ...,m)

inputs to generate yrj(r = 1, 2, ..., s) outputs. For any DMUd(d = 1,2, ...,
n) under evaluation, the best relative efficiency θdd can be determined 
using the following CCR model (Charnes et al., 1978). 

Max
∑s

r=1
μrdyrd = θdd

s.t.
∑m

i=1
ωidxij −

∑s

r=1
μrdyrj⩾0, j = 1, 2, ..., n,

∑m

i=1
ωidxid = 1,

ωid⩾0, i = 1, 2, ...,m,

μrd⩾0, r = 1, 2, ..., s.

(1)  

where μrd(r = 1, 2, ..., s) and ωid(i = 1,2, ...,m) are weights chosen by 
DMUd for the r-th output and the i-th input, respectively. 

Let μ∗
rd(r = 1,2, ..., s) and ω∗

id(i = 1, 2, ...,m) denote the optimal so
lution of Model (1). The CCR-efficiency θ∗dd =

∑s
r=1μ∗

rdyrd is the best 
relative efficiency for DMUd under self-evaluation. The d-th cross- 
efficiency for any DMUj is then computed as follows. For each DMUj, 
θj = 1

n
∑n

d=1θdj(d, j = 1,2, ..., n) can be deemed as the ultimate cross- 
efficiency score of DMUj. 

θdj =
∑s

r=1
μ∗

rdyrj/
∑m

i=1
ω∗

idxij d, j = 1, 2, ..., n (2) 

In view of the existence of multiple optimal solutions, the 
nonuniqueness of optimal weights obtained from Model (2) usually 
exists. Therefore, the cross-efficiency θdj may be arbitrarily changed if 
the calculated value is somehow displeasing, which limits the use of this 
cross-efficiency. To eliminate this imperfection, Doyle and Green (1994) 
proposed the following well-known benevolent and aggressive second
ary goals to obtain the optimal weights. 

Min
∑s

r=1
μrd(

∑n

j=1,j∕=d

yrj) or

Max
∑s

r=1
μrd(

∑n

j=1,j∕=d

yrj)

s.t.
∑s

r=1
μrdyrj −

∑m

i=1
ωidxij⩽0, j = 1, 2, ..., n; j ∕= d,

∑s

r=1
μrdyrd − θ∗

dd

∑m

i=1
ωidxid = 0,

∑m

i=1
ωid(

∑n

j=1,j∕=d

xij) = 1,

ωid⩾0, i = 1, 2, ...,m,

μrd⩾0, r = 1, 2, ..., s.

(3) 

In Model (3), Min
∑s

r=1μrd(
∑n

j=1,j∕=dyrj) represents the aggressive 
strategy, whileMax

∑s
r=1μrd(

∑n
j=1,j∕=dyrj) describes the benevolent strat

egy, and both of them are restricted to the same constraints. With the 
benevolent (or aggressive) formulation, the secondary goal tries to 
choose the weights that maximize (or minimize) the cross-efficiency 
scores of all other units, at the same time maintaining unchanged the 
self-evaluation efficiency score of the target DMUd. 

However, sometimes the weight sets induced by the benevolent or 
aggressive formulation are still nonunique, and therefore insufficient to 
ensure a consistent rankings (Yang et al., 2012). To escape this dilemma, 
Yang et al. (2012) proposed the following interval cross-efficiency 
model based on the game cross-efficiency of Liang et al. (2008b). 

Min
∑s

r=1
μrdyrj = θL

dj or

Max
∑s

r=1
μrdyrj = θU

dj

s.t.
∑s

r=1
μrdyrj −

∑m

i=1
ωidxij⩽0, j = 1, 2, ..., n; j ∕= d,

∑s

r=1
μrdyrd − θ∗

dd

∑m

i=1
ωidxid = 0,

∑m

i=1
ωidxij = 1,

ωid⩾0, i = 1, 2, ...,m,

μrd⩾0, r = 1, 2, ..., s.

(4) 

In Model (4), DMUj seeks to minimize or maximize its cross- 
efficiency scores, without changing the self-evaluation efficiency of 

Table 1 
The generalized interval cross-efficiency matrix.  

DMUd  DMUj  

1 2 … n 

1 [
θL*

11 , θ
U*
11
] [

θL*
12, θ

U*
12
] … [

θL*
1n, θ

U*
1n
]

2 [
θL*

21 , θ
U*
21
] [

θL*
22, θ

U*
22
] … [

θL*
2n, θ

U*
2n
]

… … … … … 
n [

θL*
n1, θ

U*
n1
] [

θL*
n2, θU*

n2
] … [

θL*
nn, θ

U*
nn
]
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DMUj under the same condition. The optimal solutions θL∗
dj or θU∗

dj in 
Model (4) actually are aggressive and benevolent strategies for DMUj, 
which constitute the lower and upper bounds. Specifically, the interval 
cross-efficiency scores of DMUj rated by DMUd lies in the range of 
[
θL∗

dj , θU∗
dj

]
, and the interval deteriorates to a real number when 

θL∗
dj = θU∗

dj . After obtaining all DMUs’ interval cross-efficiency results, 
the generalized cross-efficiency matrix (CEM) can be generated, as 
shown in Table 1. Note that the elements in the diagonal are the special 
cases that θL∗

jj = θU∗
jj = θ∗

jj for any j = 1,2, ...,n. 

2.2. Cross-efficiency evaluation with interval data 

Assume that the input–output data are imprecise, and thus we only 

obtain their bounded intervals 
[
xl

ij, xu
ij

]
, xl

ij > 0 and 
[
yl

rj, yu
rj

]
, yl

rj > 0. 

Wang et al. (2005) pointed out that the cross-efficiency scores derived 
from the models in Despotis and Smirlis (2002) may result in lacking 
comparability because of the existing of different production frontiers. 
For any DMUd(d = 1,2, ..., n) under evaluation, Wang et al. (2005) 
presented the following models to obtain the bounded interval 

[
θL

dd, θU
dd
]
. 

Max
∑s

r=1
μrdyl

rd = θL
dd

s.t.
∑s

r=1
μrdyu

rj −
∑m

i=1
ωidxl

ij⩽0, j = 1, 2, ..., n,

∑m

i=1
ωidxu

id = 1,

ωid, μrd⩾ε, ∀id, rd.

(5)  

Max
∑s

r=1
μrdyu

rd = θU
dd

s.t.
∑s

r=1
μrdyu

rj −
∑m

i=1
ωidxl

ij⩽0, j = 1, 2, ..., n,

∑m

i=1
ωidxl

id = 1,

ωid, μrd⩾ε, ∀id, rd.

(6) 

In Models (5) and (6), ωid and μrd denote the weights of the i-th input 
and r-th output variables, respectively, ε represents the non- 
Archimedean infinitesimal, and it is clear that θL

dd⩽θU
dd. To effectively 

distinguish all DMUs with interval input–output data, Wu et al. (2013) 
introduced the following secondary objective model to alleviate the 
ambiguity in the process of calculating cross-efficiency scores. 

Max
∑s

r=1
μrdyl

rj = θL
dj

s.t.
∑s

r=1
μrdyu

rj −
∑m

i=1
ωidxl

ij⩽0, j = 1, 2, ..., n,

∑s

r=1
μrdyl

rd − θL
dd

∑m

i=1
ωidxu

id = 0,

∑m

i=1
ωidxu

ij = 1,

ωid, μrd⩾ε, ∀id, rd.

(7)  

Max
∑s

r=1
μrdyu

rj = θU
dj

s.t.
∑s

r=1
μrdyu

rj −
∑m

i=1
ωidxl

ij⩽0, j = 1, 2, ..., n,

∑s

r=1
μrdyu

rd − θU
dd

∑m

i=1
ωidxl

id = 0,

∑m

i=1
ωidxl

ij = 1,

ωid, μrd⩾ε, ∀id, rd.

(8) 

After all DMUs’ cross-efficiencies are calculated, the corresponding 
interval CEM can be generated, as shown in Table 1. Note that the ele
ments on the main diagonal denote the self-evaluation efficiencies, and 
they can be calculated by using Models (5) and (6). Thus, we obtain a 
general model for crisp or interval data to generate the generalized in
terval CEM. 

3. Proposed aggregation approach for interval CEM 

Aggregating all DMUs’ interval CEMs into a single matrix is the 
foremost process to rank the DMUs. This paper projects each evaluated 
DMU’s cross-efficiency intervals onto two-dimensional coordinates, and 
the aggregated interval CEM constructed by optimal rally points are 
then used to rank DMUs. 

3.1. The optimal rally point in interval CEM 

Suppose that there are three random points P1, P2, P3 on a plane, 
trying to determin an unique point P∗, which make the sum of its 
Euclidean distances to the three given points minimal. The unique point 
P∗ is often called the Fermat-Torricelli point (Liu & Li, 2015). Later, this 
problem is extended to include finitely many points on the plane, trying 
to find a particular point P∗, which make the sum of its Euclidean dis
tances to these given points minimal, and the Generalized Fermat- 
Torricelli point was introduced (Liu & Li, 2015; Mordukhovich & 
Nam, 2011). 

We assume that each DMU’s cross-efficiency interval is mapped as a 
point in the two-dimensional plane. The optimal rally point achieves 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Abscissa

O
rd

in
at

e

Fig. 1. The generalized Fermat-Torricelli point.  
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Pareto optimality, indicating that it can reliably reflect a comprehensive 
opinion for each evaluated DMU. In doing so, individual preferences can 
be aggregated into consensus preferences for each DMU under evalua
tion in the decision-making group. 

Definition 1. Suppose that there are n (n > 3) points in a two- 
dimensional plane. If it exists an unique point P∗, whose Euclidean 
distances to the other given points satisfy (Qiu & Li, 2017):  

then P∗ is the optimal rally point (that is, the Generalized Fermat- 
Torricelli point, see Fig. 1). Besides, the rally points can be considered 
as the optimal rally intervals, which generate the aggregated interval 
CEM (Liu & Li, 2015). 

Seeking the optimal rally points is an NP-hard problem, which im
plies that if the plane exists more points, the difficulty of the best-known 
method to solve the problem increases exponentially (Qiu & Li, 2017). 
Next, we employ PGSA to address this problem. 

3.2. Plant growth simulation algorithm 

3.2.1. The theoretical basis of PGSA 
For a plant, the whole growing space is assumed to be a feasible 

region in the PGSA probability model (Qiu & Li, 2017). In the feasible 
region, the root (a random point) is chosen as, and x0 is the growth 
starting point of trunk M. Assuming that there exist t nodes SM1 , SM2 , ...,

SMt on the trunk. Suppose that CM1 ,CM2 , ...,CMt denote the growth hor
mone concentration of each node (also called the morphactin concen
tration), and these CMt (1⩽i⩽t) can be achieved by calculating the follow 
equation. 

CMt =
f (x0) − f (SMi )∑t

i=1(f (x0) − f (SMi ))
, 1⩽i⩽t (10) 

Here, f(X) denotes a blacklight function, which is used to identify the 
growing environment of node X on the plant. The closer X is to the light 
source, the smaller the value of f(X). If the value of the function de
creases, then the illumination of the growing point increases. 

From Formula (10), it can be obtained that 
∑t

i=1CMi = 1, then the 
state map of the morphactin concentration can be established. In the 
interval [0, 1], there exist t nodes, and their morphactin concentration 
adds up to 1. A random number σ is chosen in the interval, and the 
corresponding point, named the preferential point, prioritizes expand
ing a new branch in the next phase. 

A new branch m is expected to expand from SMk (1⩽k⩽t), which has 
Sm1 , Sm2 , ..., Smr nodes on it. Cm1 ,Cm2 , ...,Cmr denote each node’s growth 
hormone concentrations. When the growth of new round of branch ends, 
then each node’s morphactin concentration in the plant will be regen
erative automatically. After the growth of branch m, recalculation will 
be conducted to the coeersponding nodes on trunk M (except for SMk ) 
and branch m. At the same time, CMi and Cmj can be determined as 
follows. 

CMi =
f (x0) − f (SMi )∑t

i=1(f (x0) − f (SMi )) +
∑r

j=1

(
f (x0) − f (Smj )

), 1⩽i⩽t, i ∕= k (11)  

Cmj =
f (x0) − f (Smj )

∑t
i=1(f (x0) − f (SMi )) +

∑r
j=1

(
f (x0) − f (Smj )

), 1⩽j⩽r (12) 

From Formulas (11) and (12), it can be obtained that 
∑t

i=1,i∕=kCMi +

∑r
j=1Cmj = 1. A similar way as SMk will be performed to select a new 

preferential point, and a new branch starts growing in the next phase. 
Repeating the similar growth process until the new branch reaches the 
light source position, and then the growth of plant stops (Qiu & Li, 
2017). 

3.2.2. The aggregation procedure of PGSA 

Assume that there are n known points P1,P2, ...,Pn, and the goal is to 
find P∗ that minimizes 

∑n
i=1|P∗Pi|. The iterative steps are illustrated as 

follows (Liu & Li, 2015). 
Step 1: Determine the growing points (that is random points) am ∈ X, 

where X is the bounded closed box in RN. 
Step 2: Measure the growth probability χm of each growing plant. 

The formula is as follows, where m denotes the number of growing 
points. 

χm =

∑n
i=1(1/|amPi|)

∑h
m=1

∑n
i=1(1/|amPi|)

, ∀m = 1, 2, ..., h (13) 

Step 3: Generate the probability space between 0 and 1 for each 
growing point, then adopt random numbers to choose the iterative 
growing points am. 

Step 4: Determine the step-size λ, and it is set as l/1000. am grows 
according to the L-system of α = 90◦, and am will be replaced by the 
new modified points. 

Step 5: If the iteration does not generates new growing points, and a 
local optimal solution is obtained, then the procedure stops. Otherwise, 
go back to Step 2 and repeat this cycle. 

The matrix composed by the global optimal points is deemed as the 
aggregated interval CEM, which combines the consensus information 
from each DMU. 

3.3. Possibility degree for aggregated interval CEM ranking 

After the optimal rally points are generated, we need to rank them to 
obtain the ultimate cross-efficiency intervals ranking results. Xu and Da 
(2002) proposed a possibility formula for intervals comparision, as 
shown below. 

Definition 2. Let α =
[
αL,αU] = {x|0⩽αL⩽αU}. Here, α is named as a 

nonnegative interval. In particular, if αL = αU, then α is a nonnegative 
real number. 

Definition 3. Let α =
[
αL,αU] and β =

[
βL, βU], and let lα = αU − αL 

and lβ = βU − βL, then the degree of the possibility of α⩾β can be rep
resented as 

p(α⩾β) = max
{

1 − max
(

βU − αL

lα + lβ
, 0
)

, 0
}

(14) 

Also, the degree of the possibility of β⩾α can be represented as 

p(β⩾α) = max
{

1 − max
(

αU − βL

lα + lβ
, 0
)

, 0
}

(15) 

Obviously, the possibility Formulas (14) and (15) are uniform pos
sibility distribution functions, and it follows that:  

(1) 0⩽p(α⩾β)⩽1, 0⩽p(β⩾α)⩽1.
(2) p(α⩾β) +p(β⩾α) = 1. In particular, p(α⩾α) = p(β⩾β) = 0.5.

D = min
∑n

i=1
|P∗Pi| = min

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x∗ − a1)
2
+ (y∗ − b1)

2
√

+ ...+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x∗ − an)
2
+ (y∗ − bn)

2
√ )

(9)   
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To rank the interval arguments αj =
[
αL

j , αU
j

]
(j = 2, ..., n), we use 

Formula (14) to make comparison between each αi and all αj (j = 2, ...,
n). Letting pij = p(αi⩾αj), then it can generate a complementary matrix 

P =
(

pij

)

n×n
, such that pij⩾0, pij + pji = 1, pii = 0.5, i, j = 1,2, ...,n. 

After summing all elements in each line of matrix P, it can be ob
tained that pi =

∑n
j=1pij, i = 1,2, ...,n. Based on the values of pj (j = 2,

..., n), interval parameters αj (j = 2, ..., n) can be ranked in descending 
order. 

4. Procedures for the integrated ranking approach 

In summary, the procedures of the suggested integrated ranking 

Crisp data Interval data

B a s e d  on  t h e  a g g r e s s i ve  a nd 
benevolent formulations in model (3),  
u se m ode l  (4 )  to  c ons t ruc t  t he 
generalized interval CEM

Based on interval DEA formulations 
in models (5) and (6),  use models (7) 
and (8) to construct the generalized 
interval CEM

Project the cross-efficiency interval as a 
point in the two-dimensional coordinates

Use PGSA to generate the aggregated 
cross-efficiency intervals for each 

DMU under evaluation

The Fermat-
Torricelli point

The optimal 
rally point

Obtain the ultimate cross-efficiency 
rankings based on intervals.

Possibility 
degree

Complementary
matrix

DEA input and output data type

Fully rank the DMUs

Fig. 2. The flowchart of the proposed approach.  

Table 2 
Input-output data of the seven academic departments.  

DMUs Inputs Outputs CCR efficiency 

x1 x2 x3 y1 y2 y3 

1 12 400 20 60 35 17  1.000 
2 19 750 70 139 41 40  1.000 
3 42 1500 70 225 68 75  1.000 
4 15 600 100 90 12 17  0.820 
5 45 2000 250 253 145 130  1.000 
6 19 730 50 132 45 45  1.000 
7 41 2350 600 305 159 97  1.000  

Table 3 
Interval cross-efficiency matrix of DMUs.  

DMUd DMUj 

1 2 3 4 5 6 7 

1 [1.000, 1.000] [0.335, 0.985] [0.518, 1.000] [0.069, 0.684] [0.331, 1.000] [0.514, 1.000] [0.151, 1.000] 
2 [0.685, 0.937] [1.000, 1.000] [0.734, 0.848] [0.686, 0.820] [0.662, 0.921] [0.950, 1.000] [0.604, 1.000] 
3 [0.793, 1.000] [0.533, 0.858] [1.000, 1.000] [0.151, 0.470] [0.315, 0.708] [0.821, 1.000] [0.151, 0.294] 
4 [0.687, 0.688] [1.000, 1.000] [0.735, 0.735] [0.820, 0.820] [0.765, 0.765] [0.951, 0.951] [1.000, 1.000] 
5 [0.490, 1.000] [0.699, 0.970] [0.550, 0.829] [0.242, 0.672] [1.000, 1.000] [0.780, 1.000] [0.525, 1.000] 
6 [0.645, 1.000] [0.695, 1.000] [0.749, 1.000] [0.214, 0.772] [0.478, 1.000] [1.000, 1.000] [0.246, 1.000] 
7 [0.634, 1.000] [0.556, 1.000] [0.417, 0.772] [0.206, 0.820] [0.756, 1.000] [0.611, 1.000] [1.000, 1.000]  
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approach for cross-efficiency intervals are as follows. Fig. 2 shows the 
flowchart of the proposed approach. 

Step 1: Construct the generalized interval CEM as shown in Table 1. 
As for cross-efficiency evaluation with crisp input–output data, Model 
(4) is used to calculate the optimal solutions θL∗

dj or θU∗
dj , which constitute 

the lower and upper bounds. As for cross-efficiency evaluation with 
interval input–output data, Models (7) and (8) are used to generate the 
bounded cross-efficiency intervals. 

Step 2: Project the cross-efficiency interval as a point in the two- 
dimensional coordinates. The PGSA mentioned in Section 3.2 is 
applied to generate the optimal solution of Formula (9). Then, we obtain 
the aggregated cross-efficiency intervals for each DMU under 
evaluation. 

Step 3: Obtain the ultimate cross-efficiency intervals rankings. Based 
on the uniform possibility distribution function, a complementary ma

trix P =
(

pij

)

n×n 
can be established. After summing all elements in each 

line of matrix P, we can fully rank all DMUs. 

5. Application to the evaluation of academic departments and 
primary schools 

We provide two numerical examples to illustrate the proposed 
approach based on the generalized Fermat-Torricelli point. Cross- 
efficiency evaluation with crisp and interval input–output data are 
performed to rank the DMUs. 

5.1. Efficiency evaluation of academic departments (Example 1) 

Using the example provided in Yang et al. (2012) with crisp 
input–output data, we assume that there exists seven academic de
partments in a university to be evaluated. Table 2 shows the 
input–output data of the DMUs, together with their CCR efficiencies. The 
CCR model (see Model (1)) allows total weight flexibility, but it leads to 
six DMUs having efficiency scores equal to one, and it prevents full 
ranking. By calculating Model (4), the interval CEM is obtained and 
presented in Table 3. 

For DMU1 to DMU7, the efficiency values intervals provided by all 
the DMUs are shown in the second to eighth columns of Table 3. 
Considering the consensus preferences among all the evaluating DMUs, 

Fig. 3. Interval CEM aggregation using PGSA.  

Table 4 
Aggregated interval cross-efficiency results for Example 1.   

DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 

Average [0.705, 0.946] [0.688, 0.973] [0.672, 0.883] [0.341, 0.723] [0.615, 0.913] [0.804, 0.993] [0.525, 0.899] 
PGSA [0.672, 0.968] [0.692, 0.977] [0.682, 0.868] [0.237, 0.727] [0.662, 0.921] [0.821, 1.000] [0.525, 1.000] 
Distance 1.045 1.344 1.321 1.697 1.605 1.005 2.481  

Table 5 
Ranking results under different methods for Example 1.  

DMUs Aggressive Benevolent Yang et al. (2012) Liu (2018) Fang and Yang (2019) Proposed measure 

1 0.808 (2) 0.944 (2) 35.06 (3) − 7.342 (3) 0.321 (2) 3.933 (3) 
2 0.719 (4) 0.933 (3) 60.95 (2) − 8.137 (2) 0.313 (3) 4.116 (2) 
3 0.767 (3) 0.795 (6) 25.33 (6) − 2.874 (6) 0.267 (4) 3.325 (6) 
4 0.390 (7) 0.579 (7) 6.21 (7) 0.482 (7) − 0.137 (7) 0.978 (7) 
5 0.658 (5) 0.910 (4) 27.01 (5) − 5.702 (4) 0.239 (5) 3.588 (4) 
6 0.842 (1) 0.993 (1) 86.06 (1) − 9.031 (1) 0.391 (1) 5.224 (1) 
7 0.526 (6) 0.896 (5) 29.36 (4) − 5.452 (5) 0.104 (6) 3.336 (5)  
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the aggregated cross-efficiency intervals deteriorate from a group deci
sion making matrix to a unique interval. 

The interval efficiency values provided by all the DMUs are projected 
into two-dimensional coordinates. PGSA is used to generate the optimal 
rally point, as shown in Fig. 3. The aggregated interval cross-efficiency 
results using PGSA are reported in Table 4, with their minimum 
Euclidean distances. The average interval cross-efficiency results are 
also provided in Table 4 for comparison. The aggregated interval cross- 
efficiency results using PGSA contain the consensus preferences of all 
DMUs, which could be better than the averaging method. 

Next, we use the uniform possibility distribution function to rank the 
aggregated cross-efficiency intervals. By calculating Models (14) and 

(15), the complementary matrix P =
(

pij

)

7×7 
is constructed as follows. 

Then, we have p1 = 3.933, p2 = 4.116, p3 = 3.325, p4 = 0.978, p5 =

3.588, p6 = 5.224, and p7 = 3.336. The final rankings of DMUs can be 
determined as DMU6≻DMU2≻DMU1≻DMU5≻DMU7≻DMU3≻DMU4. 

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.500 0.475 0.593 0.930 0.551 0.309 0.575
0.525 0.500 0.626 0.955 0.579 0.336 0.595
0.407 0.374 0.500 0.933 0.463 0.129 0.519
0.070 0.045 0.067 0.500 0.087 0.000 0.209
0.449 0.412 0.537 0.913 0.500 0.228 0.540
0.691 0.664 0.871 1.000 0.772 0.500 0.726
0.425 0.405 0.481 0.791 0.460 0.274 0.500

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Table 5 shows the rankings using different models, and the numbers 
in parentheses present corresponding rankings. The ranking results of 
the aggressive and benevolent strategies are different, putting the DM 
into a dilemma about which to choose. The proposed ranking results 

agree completely with the method proposed by Liu (2018) and differ just 
slightly from the others. With such similar results, is our proposed 
approach different enough to deserve consideration? We believe our 
proposed approach is a worthwhile option because it considers all the 
possible weight sets when measuring the peer-evaluation efficiency 
values, and consensus preferences are considered to aggregate the in
terval CEMs. 

Table 6 shows the Spearman rank correlation coefficient among 
different rankings. The rank correlation coefficients among the benev
olent model, Yang et al. (2012), Liu (2018), and our proposed measure 
are all greater than 0.9, which shows the similarity among them. 
However, the proposed measure is obviously different from the 

Table 6 
Spearman rank correlation coefficient among different rankings.  

Models Aggressive Benevolent Yang et al. (2012) Liu (2018) Fang and Yang (2019) Proposed measure 

Aggressive  1.000      
Benevolent  0.786  1.000     
Yang et al. (2012)  0.679  0.929  1.000    
Liu (2018)  0.714  0.964  0.964  1.000   
Fang and Yang (2019)  0.964  0.893  0.821  0.857  1.000  
Proposed measure  0.714  0.964  0.964  1.000  0.857  1.000  

Table 7 
Input-output data of 25 primary schools.  

DMUs Input Output 

x1 x2 x3 x4 x5 y 

1 [47, 53] 3964 8947  3.54  9.26 [313, 360] 
2 [39, 40] 965 4247  2.04  3.41 [102, 110] 
3 [65, 70] 2222 8543  2.23  12.07 [263, 300] 
4 [43, 54] 2316 7560  2.42  5.7 [261, 274] 
5 [47, 49] 3362 11,035  1.23  5.9 [292, 312] 
6 [49, 59] 3273 6120  5.61  8.53 [261, 289] 
7 [30,36] 1534 7439  2.55  5.73 [256, 270] 
8 [45, 57] 1130 4043  2.25  10.07 [73, 81] 
9 [38, 45] 2278 7306  1.51  7.6 [293, 311] 
10 [104, 124] 7321 25,218  16.91  15.73 [1129, 1195] 
11 [92, 110] 6218 11,552  10.86  13.95 [410, 455] 
12 [38, 40] 1878 4155  3.89  6.43 [191, 202] 
13 [42, 46] 2649 6986  1.41  6.22 [242, 263] 
14 [39, 50] 2402 8623  2.18  7.25 [264, 341] 
15 [55, 57] 2359 7200  5.06  8.57 [221, 264] 
16 [30, 39] 1328 6260  1.87  5.68 [179, 227] 
17 [132, 137] 11,922 53,840  8.28  20.07 [2672, 3122] 
18 [59, 62] 3552 11,674  6.76  8.2 [417, 505] 
19 [17, 19] 1666 3926  2.98  2.83 [125, 147] 
20 [173, 180] 23,200 40,000  23.09  25.18 [3066, 3122] 
21 [73, 74] 3271 21,484  2.34  10.9 [360, 386] 
22 [59, 72] 4301 10,300  2.26  10.14 [290, 363] 
23 [99, 112] 21,175 47,060  7.34  14.35 [1995, 2317] 
24 [35, 41] 1410 13,803  1.65  5.37 [212, 230] 
25 [65, 105] 30,705 22,000  38.3  15.99 [1252, 1276]  

Table 8 
Aggregated interval cross-efficiency values for Example 2.  

DMUs Average PGSA Distance 

DMU1 [0.44, 0.51] [0.50, 0.57]  2.163 
DMU2 [0.37, 0.40] [0.41, 0.44]  1.461 
DMU3 [0.47, 0.54] [0.51, 0.58]  1.543 
DMU4 [0.50, 0.53] [0.55, 0.58]  1.798 
DMU5 [0.43, 0.46] [0.42, 0.45]  1.705 
DMU6 [0.47, 0.52] [0.56, 0.63]  3.552 
DMU7 [0.56, 0.60] [0.60, 0.64]  1.900 
DMU8 [0.25, 0.29] [0.29, 0.33]  1.497 
DMU9 [0.60, 0.63] [0.64, 0.68]  1.967 
DMU10 [0.64, 0.68] [0.72, 0.77]  3.100 
DMU11 [0.39, 0.44] [0.47, 0.52]  2.912 
DMU12 [0.53, 0.57] [0.65, 0.69]  4.170 
DMU13 [0.49, 0.53] [0.52, 0.56]  2.060 
DMU14 [0.46, 0.60] [0.50, 0.65]  1.504 
DMU15 [0.41, 0.49] [0.48, 0.57]  2.667 
DMU16 [0.47, 0.60] [0.50, 0.63]  1.385 
DMU17 [0.87, 1.00] [0.86, 1.00]  0.590 
DMU18 [0.50, 0.61] [0.57, 0.69]  2.596 
DMU19 [0.40, 0.46] [0.46, 0.54]  2.470 
DMU20 [0.88, 0.90] [0.98, 1.00]  3.690 
DMU21 [0.33, 0.35] [0.31, 0.33]  1.249 
DMU22 [0.39, 0.48] [0.41, 0.51]  2.015 
DMU23 [0.62, 0.73] [0.60, 0.70]  3.609 
DMU24 [0.35, 0.38] [0.30, 0.32]  2.394 
DMU25 [0.42, 0.46] [0.46, 0.47]  3.989  

Table 9 
Rankings under different models for Example 2.  

DMUs Wang et al. 
(2016) 

Proposed 
measure 

DMUs Wang et al. 
(2016) 

Proposed 
measure 

1 0.345 (18) 11.393 (15) 14 0.303 (15) 14.209 (10) 
2 0.538 (24) 4.064 (22) 15 0.368 (19) 10.739 (16) 
3 0.335 (17) 12.219 (13) 16 0.288 (14) 13.595 (12) 
4 0.310 (16) 13.901 (11) 17 0.014 (3) 23.625 (2) 
5 0.200 (9) 4.475 (21) 18 0.225 (10) 18.061 (7) 
6 0.267 (12) 16.031 (9) 19 0.412 (21) 9.000 (17) 
7 0.193 (8) 17.512 (8) 20 0.000 (1) 24.375 (1) 
8 0.785 (25) 1.333 (24) 21 0.530 (23) 1.917 (23) 
9 0.161 (6) 20.081 (5) 22 0.384 (20) 6.261 (19) 
10 0.103 (5) 22.500 (3) 23 0.013 (2) 19.084 (6) 
11 0.419 (22) 8.442 (18) 24 0.268 (13) 1.250 (25) 
12 0.178 (7) 20.518 (4) 25 0.101 (4) 6.156 (20) 
13 0.261 (11) 11.759 (14)     
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aggressive model because the similarity between them is relatively 
weak. The aggressive strategy selects weights to minimize the cross- 
efficiency of other DMUs, which is different from the proposed aggre
gation mechanism, that is considering consensus preference among all 
DMUs. 

If the group evaluation does not consider the consensus degree of the 
group opinion and carries out simple integration evaluation, the indi
vidual opinions with low consensus degree will be forcibly integrated. At 
the same time, this operation will lead to unfair group evaluation results, 
lack of scientific and representative. As we can see from Fig. 3(f) and (g), 
compared with the decision results recognized by other DMUs, the only 
outlier DMU has a low consensus in the group decision making process. 
Therefore, it is difficult for other DMUs to accept such evaluation results, 
and all DMUs will seek better results than the average cross-efficiency. 
Generally speaking, the ranking result of the proposed approach is 
more reasonable and credible for group decision making in the real 
world. 

5.2. Efficiency evaluation of primary schools (Example 2) 

The example provided by Wang et al. (2016) uses interval input and 
output data, and we assume that there are 25 primary schools to be 
evaluated. Among these indicators, x1 and y are given in an interval 
form. Table 7 shows the input–output data of the 25 primary schools. 
This example can also show that the proposed integrated ranking 
approach is applicable to the case when there exists interval number of 
input–output data. Meanwhile, the sample size of the data set used in 
example 2 is larger than that in example 1, which further verifies the 
robustness of the proposed ranking approach. 

By calculating Models (7) and (8), the interval CEMs are obtained. 
The interval efficiency results provided by all the DMUs are projected 
into two-dimensional coordinates. The aggregated interval cross- 
efficiency results using PGSA and the average interval cross-efficiency 
results are provided in Table 8, with their minimum Euclidean distances. 

Next, we use the uniform possibility distribution functions to rank 
the aggregated cross-efficiency intervals. By calculating Models (14) and 

(15), the complementary matrix P =
(

pij

)

25×25 
is constructed. We then 

get the rankings of all the 25 DMUs. Table 9 shows the rankings using 
different models, and the numbers in parentheses present corresponding 
rankings. 

The distance entropy model is applied to obtain the weights of in
terval efficiency, and the relative Euclidean distances to the ideal cross- 
efficiency of all DMUs are used by Wang et al. (2016) to rank DMUs. The 
Spearman rank correlation coefficient among abrove two rankings is 
0.720, which shows the strong correlation between them. It is worth 
noting that if different aggregation weights are assigned to the lower or 
upper bounds of the interval, the ranking of DMUs would not be the 
same. This fact may confuse the DMs about how to determine aggre
gation weights. The proposed approach avoids the weight choice by 
using PGSA to generate the optimal rally point, and at the same time, the 
consensus preferences are considered. 

6. Conclusions 

As an important method of efficiency evaluation, DEA has attracted 
more and more attention. Cross-efficiency evaluation method can take 
into account the self-evaluation and peer-evaluation among DMUs, 
which has important inspiration for the research of behavioral decision 
making, especially in the framework of group decision making. Average 
cross-efficiency is commonly used for cross-efficiency aggregation, but 
the correlation between the cross-efficiency value and the weight is lost, 
and the weight information cannot be provided to DMs to improve their 
own efficiency. In addition, the average cross-efficiency is not pareto 
optimal, and thus it is difficult to be accepted by all DMUs. The sub
jective preference of DMs often exists in the process of aggregation; 

however, the existing research fails to consider DMU’s consensus pref
erence that plays an important role in making all DMUs agree on the 
evaluation. 

In this paper, we firstly summarize the cross-efficiency ranking 
methods for crisp and interval input–output data. The proposed inte
grated ranking approach can be applied to the case where the input and 
output are crisp numbers or there are interval numbers. Secondly, in
terval CEMs are generated for the evaluation of DMUs to obtain more 
reasonable and credible rankings. In doing so, the proposed approach 
need not select a specific secondary goal, rather considering all possible 
weights. Thirdly, considering the consensus preferences among all 
DMUs, PGSA is applied to generate the generalized Fermat-Torricelli 
point to aggregate the interval CEM. The aggregation process of PGSA 
can retain more valuable information from all experts without distor
tion. Finally, the possibility degree and complementary matrix are used 
to rank all DMUs fully. Two numerical examples are illustrated and 
validate the proposed method of this paper. Compared with the existing 
strategies of cross-efficiency evaluation, the proposed approach requires 
fewer prior assumptions about the DMs being benevolent or aggressive. 
At the same time, we avoid the weight choice in the aggregation process 
for an interval CEM. 

The proposed integrated ranking approach can also be further 
extended in future studies. Firstly, apart from the aggressive and 
benevolent strategies, the neutral strategy might be the most likely 
cross-efficiency standard to incorporate into the cross-efficiency in
tervals. The PGSA can aggregate triangular fuzzy numbers by projecting 
them into three-dimensional coordinates. Secondly, the recognition 
degree among the evaluating DMUs, which is derived from the 
Euclidean distances between the optimal rally point and the other 
points, can be defined as the weights of the cross-efficiency intervals. 
The PGSA technique can also solve this weighted Fermat-Torricelli 
problem. Thirdly, numerous operators in multi-criteria decision-mak
ings can be applied to extend the ultimate cross-efficiency interval 
rankings. Besides, this paper has some limitations. The size of the sample 
used in the practical example is small relatively to the number of input 
and output variables, which may affect cross-efficiency results. Future 
studies can adopt practical cases with large enough sample size to verify 
the research results of this paper. 
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