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A B S T R A C T   

Reducing greenhouse gas emissions is urgent for the global community with rising climates. Considering the 
importance of renewable energy in mitigating climate warming, forecasting renewable energy generation is vital 
for the Chinese government’s future low-carbon and green development plan. This paper proposes a novel 
multivariable grey model based on historical data on China’s renewable energy generation and three industries. 
A novel information accumulation mechanism with two adaptive factors is designed to improve the traditional 
multivariable grey modeling defect. Based on the proposed mechanism, this paper optimizes the initial and 
background values and nonlinear model structure with the whale optimization algorithm. The forecasting results 
show that the fitting MAPE is 1.13%, comprehensive MAPE is 2.60%, MSE is 50.86, and RMSE is 7.13, which 
significantly improve the forecasting accuracy of traditional GM(1,N) and are better than other compared 
models. The forecasting results show that China’s renewable energy generation will gradually increase to 
5834.02 TWh. The Chinese government should keep the previous Five-Year Plans rising trend of the three in
dustries in the future Five-Year Plans to support renewable energy industries. In China’s future energy system, it 
is necessary to promote incentive policies and capital investment for actively accelerated development to make 
renewable energy the leading force.   

1. Introduction 

The greenhouse and frequent extreme climate events have increased 
global warming and environmental degradation. The melting glaciers, 
soil erosion, and rising sea levels make human society face severe 
challenges from global ecological imbalance. Countries worldwide 
should urgently reach an agreement and adopt practical solutions to 
mitigate the environmental crisis and climate catastrophe. With the 
recognition of the low-carbon economy, different countries’ govern
ments have taken clean and environmentally friendly energy trans
formation as their responsibility and transferred to a green and efficient 
energy structure. China, the world’s largest developing country, rapidly 
developed as the world’s second-largest economy in 2010. Under the 
scientific guidance and economic development scale of the 12th and 

13th Five-Year Plans, China’s economic aggregate has firmly ranked 
second globally. However, China’s fossil fuel consumption accounted for 
82.5 % of the total energy consumption in 2022, which reflects that 
China’s development still needs traditional energy support. China still 
has a long way to go to achieve its Carbon Peak and Carbon Neutrality 
goals. The national contributions promising to tackle global warming 
make it imperative for the Chinese government to intensify efforts to 
develop renewable energy and accelerate China’s transition to green and 
low-carbon energy (Xing et al., 2023). 

People’s production applies renewable energy through power gen
eration. Large-scale development of renewable energy can ensure power 
supply. It contributes to replacing high-carbon energy sources to reduce 
carbon emissions and achieve ecological protection. The most valuable 
reason is that renewable energy has strong sustainability and can satisfy 
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the energy needs for human development in the long term. Therefore, 
considering the current development situation, environmental pollu
tion, and traditional energy scarcity, developing renewable energy is 
crucial for the Chinese government to achieve sustainable environ
mental, economic, and social development (Rasool et al., 2022). 

Therefore, forecasting renewable energy generation is the basis for 
sustainable energy development planning under the Chinese govern
ment’s planned economy and is crucial to formulating the Chinese 
government’s core renewable energy policies (Xu et al., 2020). Estab
lishing effective forecasting models that suit China’s power generation 
characteristics has important forward-looking significance in promoting 
China’s decision-making on sustainable renewable energy development. 
However, China’s renewable energy industry started late, with few 
historical statistics for reference. Meanwhile, renewable energy gener
ation is affected by seasons, climate, and technology, which makes the 
samples with small statistical units uncertain and missing. 

Considering the small sample size of the annual statistical data, the 
multivariable grey forecasting model is believed as an ideal technology 
to measure China’s future renewable energy generation (Wang et al., 
2022). However, the existing multivariable grey models have several 
drawbacks that may hinder accurate forecasting. In the information 
accumulation process, the existing models fail to actively introduce the 
effects of new and old information from the related factors on the sys
tem. The traditional simplified modeling makes the related factors- 
driven structure vague and needs further optimization. Also, the exist
ing models do not comprehensively improve the model accuracy from 
the unified optimization perspective of modeling parameters and model 
structure. Therefore, this paper aims to propose a new multivariable 
grey model based on a novel information accumulation mechanism with 
comprehensive improvement from the modeling parameters and struc
ture. The proposed grey model forecasts China’s future renewable en
ergy generation in the 14th and 15th Five-Year Plan to research and 
judge the future development form of China’s renewable energy. 

For innovation contribution, the proposed multivariable grey model 
modeling method forms a novel information accumulation mechanism 
instead of the traditional mechanism for the related factors. The novel 
mechanism improves the adaptability between the system and related 
factor sequences. It comprehensively improves the multivariable grey 
model’s forecasting ability and expands its application by enhancing the 
accuracy and robustness of the forecasting effect. For practical contri
bution, this paper makes a scientific forecasting assessment of the future 
development trend of China’s renewable energy generation based on the 
development of China’s three major industries. It applies the proposed 
model to calculate China’s future clean energy generation and carbon 
emissions reduction under different development scenarios. Based on 
the forecasting results, this paper provides foresight suggestions and 
references for the policy formulation of China’s renewable energy 
development in the 14th and 15th Five-Year Plans. 

The second section summarizes the research literature review and 
the ideas for solving the existing research problems. The third section 
introduces the designed model and the innovation improvement idea 
adopted in this paper. The fourth section is an empirical study. The fifth 
section discusses the subsequent forecasting measure result, and the 
sixth section reveals the conclusion. 

2. Literature review 

Renewable energy has great potential for the sustainable develop
ment of future power systems. Scholars have conducted many prediction 
studies based on relevant data and information about renewable energy 
generation (Goncalves et al., 2021; Yang et al., 2022). In the forecasting 
field, scholars explore open problems for application scenarios, energy 
transition, and development paths involved in renewable energy in the 
future. Aslam et al. (2021) predicted the demand for renewable energy 
based on the power grid’s long-term operation from the microgrid in
telligence perspective. Liang et al. (2022) discussed the effect of climate 

policy uncertainty on the forecasting ability of renewable energy index 
fluctuation from energy stability and sustainable development. Based on 
the forecasting framework, Habiba et al. (2022) evaluated the interac
tion and impact of finance, green technology innovation, and renewable 
energy development on the world’s major carbon emitters. Khan et al. 
(2023) pre-judged the operation degree of renewable energy power 
generation systems in urban energy systems from the generated power 
forecasting perspective. These foresight findings provide important 
decision-making references on energy management for society, gov
ernment, and enterprises (Wang et al., 2022; Mayer & Yang, 2023). 

Renewable energy generation forecasting forms consist of physical 
and data-driven models (Jonas et al., 2019). By contrast, the physical 
model focuses more on causal relationships and equation simulations in 
renewable energy systems, while data-driven models focus more on 
information mining of system output power data. Therefore, data-driven 
models reduce complex experiment processes than physical models. 
Many scholars select data-driven models for renewable energy fore
casting work. Popular applied data-driven models mainly include sta
tistical, artificial intelligence, and grey models (Lu, 2019; Zheng et al., 
2023). 

2.1. Statistical forecasting model 

Statistical models include time series and regression forecasting 
models, which provide reliable forecast estimates for the uncertainties 
and complex problems associated with renewable energy (Wei et al., 
2021; Costa et al., 2021). Applying more extended time series data, 
statistical models can accurately forecast renewable energy sources 
when the data samples are sufficient. Cribari-Neto et al. (2023) fore
casted the stored hydroelectric energy proportion in South Brazil with 
beta autoregressive moving average models based on the assumed 
values. Kahvecioglu et al. (2022) applied weather predictors to optimize 
the autoregressive moving average model for conditional direct irradi
ance forecasting for solar energy. However, statistical models usually 
require assumptions about the distribution and relationships of histori
cal data and depend more on the priori results (Cakir, 2023). These 
classical models cannot conduct the nonlinear and non-normal data 
samples well. When faced with insufficient data samples, individual 
observations interfere with the model’s stability. The parameter esti
mates and significance tests are unreliable. When the data sample is too 
large, the computational efficiency of the statistical models is low, and 
the generalization ability decreases significantly. 

2.2. Artificial intelligence forecasting model 

Artificial intelligence models are at the forefront of predictive 
modeling with the continuous growth of data scale and structural 
complexity (Manuel & Maldonad, 2020; Sharda et al.,2021). These big 
data forecasting models are represented by Artificial Neural Networks 
(ANN), Machine Learning (ML), Deep Learning (DL), and Support Vector 
Machine (SVM). They are breaking through the upper limit of data 
volume and structure of traditional statistical forecasting models and 
further realizing the novel intersection between the application of data 
science and artificial intelligence in the forecasting field (Herrera et al., 
2022; Hu & Man, 2023). Artificial intelligence models are usually 
directly applied or combined with statistical models for energy fore
casting. Al-Alimi et al. (2023) designed a novel time series model 
combining Long Short-Term Memory (LSTM) and ANN to predict energy 
supply and demand effectively. Li and Song (2023) selected the statis
tical model for the linear trend component and the ML method for the 
non-linear component forecasting. They established a novel multi-scale 
model to predict the futures prices of oil and gas, and the model’s ac
curacy improved by 6.11 % and 2.05 %, respectively. Somu et al. (2021) 
proposed a DL framework that combines the K-means, Convolutional 
Neural Networks, and LSTM for building energy forecasting. Hou et al. 
(2021) proposed an optimized ANN combined with the pathfinder 
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algorithm to forecast the hydropower generation demand. They further 
explored the relationship between weather change and power supply. By 
contrast, artificial intelligence models can better capture the complex 
non-linear relationships between data sets and perform feature learning 
based on extensive data amount. 

Although the forecasting effects of artificial intelligence models are 
better than those of statistical and grey forecasting models in processing 
large amounts and complex dimension data sets, they also have limita
tions. These models are more dependent on data volume requirements 
than statistical models. High-precision models require massive data as 
modeling support and more significant investment in computing re
sources and training time. The massive data often leads to overfitting, 
and the generalization ability weakens when new data is processed. 
Black-box modeling makes the internal operating mechanism and 
calculation process of artificial intelligence models hard to explain. 

2.3. Grey forecasting model 

However, energy data with years as the time dimension cannot form 
a large sample set. Statistical models and artificial intelligence models 
have poor applicability. When forecasting with small sample sets, the 
grey models usually show the advantages of more flexibility, fair 
complexity, ideal forecasting effect, and high practicality (Xie, 2022). 
Therefore, the grey models are widely applied in energy and environ
ment development planning and solve the prediction problems due to 
the small samples (Duan & Wang, 2023; Xie et al., 2023). The grey 
models mainly focus on the establishment and optimization of univari
ate grey models and multivariable grey models. 

For the univariate grey model research, Xia et al. (2023) proposed a 
fractional univariate grey model with double error correction to forecast 
China’s installed renewable energy capacity. Zhang et al. (2022) applied 
the Caputo fractional derivative to improve the fractional accumulation 
mechanism. They combined it with the Grey Wolf Optimizer to design a 
novel renewable energy forecasting model. Ding et al. (2022) conducted 
the seasonal fluctuations with the data-restacking technique. They 
established the dynamic structure for grey modeling to forecast Ameri
cans’ monthly renewable energy consumption. Wang et al. (2022) 
pointed out a fractional time-delayed grey Bernoulli model for renew
able energy forecasting with nonlinear characteristics. Qian and Sui 
(2021) designed a novel discrete grey model combined with the 
nonlinear and periodic terms for adaptive structure. 

For the multivariable grey model research, Ding et al. (2023) intro
duced the time lag coefficient based on the convolution analytical so
lution, proposed a multivariable time-delayed grey model, and 
conducted a step-by-step prediction study on China’s carbon emissions. 
Ren et al. (2023) proposed the SOGM(1,N) based on the cyclic modifi
cation of multiple dummy variables for China’s seasonal hydropower 
generation forecasting. Zhang et al. (2022) integrated trends and con
stant terms and considered the interaction terms to propose the trend 
interaction, multivariable grey model. The parameter improvement of 
the multivariable grey model is complicated. In addition to the initial 
and background values, optimization involves time-delayed, nonlinear 
optimization with power index, interaction, and dummy variables to 
improve prediction performance (Du et al., 2023). 

Research on grey model optimization focuses on optimizing the 
modeling parameters and extending the model forms. Generally, for 
model parameters optimization, scholars modify the initial and back
ground values of the traditional grey model to minimize errors. They 
optimize the initial conditions of the initial value by combining the 
priority and adaptability of modeling information to the system 
sequence (Zhou et al., 2022; Heidari & Zeng, 2023). Some scholars focus 
on weakening the interference of extreme values in the accumulation 
process to improve the grey models’ performance. They construct a new 
background value sequence by adjusting the weights of adjacent ele
ments. The improved background values are usually set as a value in the 
interval of 0 and 1 instead of 0.5 to achieve smooth processing of data 

mutation and further improve the accuracy of the grey model (Huang 
et al., 2021; Wang & Zhang, 2022). 

Regarding grey model form optimization, existing studies mainly 
focus on establishing the fractional order grey model and grey Bernoulli 
model by constructing fractional order accumulation and power pa
rameters. They solve the forecasting data with nonlinear characteristics 
by changing the models’ time-variable and cumulative structures 
(Zhang et al., 2023). Yan et al. (2023) applied fractional order cumu
lations to the time-delay driving of the multivariate grey models to 
alleviate the uncertainty of online public opinion data. Wang and Si 
(2024) introduced different power parameters to simulate the nonlinear 
characteristics of interaction between different related factors and 
forecast the future carbon emission intensity of China. In addition, some 
studies combine univariate grey models as trend terms with dynamic 
nonlinear factors to construct nonlinear seasonal grey models (Wang 
et al., 2018). Du et al. (2021) proposed the expression of FGM(1,1) 
replacement trend fluctuation to construct a seasonal fractional grey 
model to forecast the evolution trend of PM2.5 under air pollution. Zhu 
et al. (2024) optimized the seasonal grey model’s seasonal factors using 
adaptive adjustment to weaken the differences in seasonal information 
and improve air quality prediction accuracy in China’s provinces. 

However, the existing research still has some limitations. From the 
perspective of energy forecasting research, based on hour, day, and 
month time units, the scale of available data samples is enormous. 
Artificial intelligence and statistical models based on intelligent algo
rithm optimization are more suitable than other methods. However, the 
renewable energy industry is emerging, and the national development 
plan mainly uses years as the time unit for research. The annual data 
samples are few and cannot meet these models’ data sample size re
quirements. By contrast, the grey models are more suitable for the 
renewable energy forecasting scenario. 

From the perspective of grey models’ optimization, the univariate 
grey model’s structural singleness, parameter optimization, and 
nonlinear limitations are not solved from the modeling process. The 
performance is poor when fitting the samples with significant nonline
arity. The multivariable grey models have broader optimization space 
due to the multivariate model structures. They improve the models’ 
flexibility in response to nonlinear changes by introducing multiple 
relevant factor variables. They can interchangeably integrate informa
tion on various development factors and have the applicability of multi- 
dimensional forecasting. However, the traditional multivariable grey 
model has poor universality, and its preliminary prediction ability for 
sequences is often far from ideal. The accumulation mechanism of the 
relevant factors is unreasonable, and the processing of the model pa
rameters is more complicated than that of the univariate grey models. 

Therefore, this paper proposes the following innovations to solve the 
literature review’s limitations gradually. The following sections propose 
and apply the comprehensively improved novel multivariable grey 
model for forecasting China’s renewable energy. The proposed model 
introduces dual adaptive parameters to flexibly improve the information 
data accumulation mechanism of the traditional multivariable grey 
model. Under this novel mechanism, new data information can adjust 
adaptively according to the system sequence, and historically accumu
lated related factor data can also accumulate and adaptively optimize 
according to the system sequence. It innovatively optimizes the tradi
tional modeling methods and forms a novel grey-driver item structure 
from the related factor sequences. The model structure includes initial, 
background, and power parameter optimization. The proposed model 
reduces the parameter selection complexity by combining the whale 
optimization algorithm (WOA) (Mirjalili & Lewis, 2016). It can trans
form into various improved derivative models with flexible and stable 
applicability according to different optimization parameter conditions. 

Y. Ren et al.                                                                                                                                                                                                                                      



Expert Systems With Applications 252 (2024) 124130

4

3. Methodology 

3.1. Preliminaries 

Definition 1. (Zeng et al., 2019) The traditional multivariate grey 
model GM(1,N) contains system and related factor sequences. The sys
tem sequence represents the prediction target data, and factors related 
to the prediction target constitute the related factor sequence. 

Suppose the system sequence is a(0)(1), a(0)(2), ..., a(0)(n), expressed as 
A(0)

1 , and the related factor sequences A(0)
j are: 

(a(0)
2 (1), a(0)

2 (2), a(0)
2 (3), ..., a(0)

2 (n))

(a(0)
3 (1), a(0)

3 (2), a(0)
3 (3), ..., a(0)

3 (n))
...

(a(0)
j (1), a(0)

j (2), a(0)
j (3), ..., a(0)

j (n))

According to the first-order accumulated generating operation (1- 
AGO) and traditional background value calculation, this paper generates 
the background value sequence S1 = (s1(2), s1(3), ..., s1(n)) and the 
accumulating sequence of related factors A(1)

j = (a(1)
j (2), a(1)

j (3), ⋯,

a(1)
j (n)), as shown in Eq. (1). 

⎧
⎪⎪⎨

⎪⎪⎩

s1(k) = (a(1)
1 (k) + a(1)

1 (k − 1))/2

a(1)
j (k) =

∑k

i=1
a(0)

j (i), k = 1, 2, ..., n
(1)  

Definition 2. (Ding et al., 2017) Construct the matrix M and matrix N 
from S1 and A(1)

j . 

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− s1(2) a(1)
2 (2) ⋯ a(1)

j (2)

− s1(3) a(1)
2 (3) ⋮ a(1)

j (3)
⋮ ⋮ ⋱ ⋮

− s1(n) a(1)
2 (n) ⋯ a(1)

j (n)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a(0)
1 (2)

a(0)
1 (3)
...

a(0)
1 (n)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Suppose the driving coefficient matrix is α̂ = [α1, α2, ...,αN]
T, and α̂ =

(MTM)
− 1MTN then the traditional GM(1,N) can be expressed as: 

a(0)
1 (k) +α1s1(k) =

∑N

j=2
αja(1)

j (k) (2) 

α1 is the model development coefficient, 
∑N

j=2αja(1)
j (k) is the grey 

driving term, and αj(j⩾2) is the driving coefficient. The first-order in
verse accumulated generating operation (IAGO) calculates the fitted and 
forecasting values, as shown in Eq. (3). The whitening differential 
equation of the GM(1,N) is as follows. 

â(0)(k) = â(1)
1 (k + 1) − â(1)

1 (k), k = 1, 2,⋯, n (3)  

Definition 3. (Wang, 2017) Suppose the grey driving term’s ampli
tude of variation changes less, 

∑N
j=2αja(1)

j (k) can be set as the grey 
constant. The whitening differential equation of the GM(1,N) is as Eq. 
(4). 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

da(1)
1 (t)/dt + α1a(1)

1 (t) =
∑N

j=2
αja

(1)
j (k)

a(1)
1 (k) = e− α1(k− 1)

[

a(0)
1 (1) −

∑N
j=2αja

(1)
j (k)

α1

]

+

∑N
j=2αja

(1)
j (k)

α1

(4)  

3.2. The proposed flexible data information accumulation mechanism 

The traditional GM(1,N) applies 1-AGO to accumulate data infor
mation on related factors directly. This method simplifies the modeling 
process but cannot reflect the difference between new and old infor
mation. It ignores the information fitness between the relevant factor 
sequences and the system sequence. Therefore, this section proposes a 
novel data information accumulation (IA) mechanism. Under this 
mechanism, the entire forecasting system model flexibly combines new 
data and old data information accumulation through two different 
adaptive factors considering the information characteristics of the sys
tem sequence. 

When the related factor sequences accumulate, the IA mechanism 
defines the adjacent data as new and old information based on historical 
time. It adds two adaptive factors, β1 and β2, to adjust the data infor
mation value for participating in the novel accumulating process. In 
combining old and new information, the IA mechanism determines the 
adaptive factors according to the system sequence’s target of minimum 
errors. Unlike the adaptive factor for new information, the factor for old 
information further describes the cumulative impact of historical in
formation on the future development of the system sequence through 
cyclic accumulation. The old information adaptive factor β2 continu
ously updates until the latest information participates in the last accu
mulation. On the contrary, the new information adaptive factor β1 does 
not include the cumulative effect of time and directly acts on the 
accumulation process, reflecting the timeliness of new information. The 
specific expression is as shown in Theorem 1. 

Theorem 1. Suppose N kinds of related factors form the related factor 
sequences of N× n. When there are adaptive factors β1 and β2 to adjust 
the accumulated value of the old data information with new information 
of the related factor sequences, the grey driving term transforms from 
∑N

j=2αja(1)
j (k) to 

∑N
j=2αj

∑n
i=1β1βn+1− k

2 a(0)
j (k). 

Proof. Based on the GM(1,N) modeling setting, assign the adaptive factor 
β1 to the new data information and adaptive factor β2 to the old data in
formation accumulation. 

When k = 1, the initial information accumulation is updated to 
β1β2a(0)

j (1). 

When k = 2, the new data information updates to β1a(0)
j (2), the grey 

information accumulation of related factors updates to: 

β2(β1β2a(0)
j (1) + β1a(0)

j (2)) = β1β2
2a(0)

j (1)+ β1β(0)
j2 a (2) 

When k = 3, the new data information updates to β1a(0)
j (3), then the 

grey information accumulation updates to: 

β2(β1β2
2a(0)

j (1)+ β1β2a(0)
j (2)+ β1a(0)

j (3)

= β1β3
2a(0)

j (1)+ β1β2
2a(0)

j (2)+ β1β2a(0)
j (4) 

Therefore, when k = n, the grey information accumulation can up
date to 

β2(β1βn− 1
2 a(0)

j (1) + β1βn− 2
2 a(0)

j (2) + ...+ β1a(0)
j (k) = β1βn

2a(0)
j (1)

+ β1βn− 1
2 a(0)

j (2) + ...+ β1β2a(0)
j (k)

=
∑n

i=1
β1βn+1− k

2 a(0)
j (k) (5) 

The grey driving term coefficient is known to be αj(j⩾2), so when the 
grey driving term constructed by the traditional model is 

∑N
j=2αja(1)

j (k), 
under the proposed accumulation mechanism the new grey driving term 
will be updated as follows. 
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α2

∑n

i=1
β1βn+1− k

2 a(0)
2 (k) + α3

∑n

i=1
β1βn+1− k

2 a(0)
3 (k) + ...+ αN

∑n

i=1
β1βn+1− k

2 a(0)
N (k)

=
∑N

j=2
αj

∑n

i=1
β1βn+1− k

2 a(0)
j (k)

(6) 

This paper entitles the multivariable grey model as the IAGM(1,N). 
The model expression is: 

a(0)
1 (k) +α1s1(k) =

∑N

j=2
αj

∑n

i=1
β1βn+1− k

2 a(0)
j (k) (7)  

Theorem 2. When the initial and background values of the IAGM(1,N) 
are a(0)

1 (1) and s1(n), respectively, the M and N matrices are:   

The grey driving term coefficient matrix α̂ = [α1,α2, ...,αN]
T should 

satisfy: 
When n = N+1, α̂ = M− 1N, |M ∕= 0|N. 
When n > N + 1, α̂ = (MTN)

− 1MTN,
⃒
⃒MTM ∕= 0

⃒
⃒. 

When n < N + 1, α̂ = MT(MTM)
− 1N,

⃒
⃒MTM ∕= 0

⃒
⃒. 

In the accumulation process, whether β1 and β2 have a weakening 
effect between zero and one or a strengthening effect greater than one is 
determined flexibly according to the system sequence characteristics. 

Theorem 3. When Theorem 1 and Theorem 2 hold, the approximate 
time response function of the IAGM(1,N) is: 

a(1)
1 (k) = e− α1(k− 1)

[

a(1)
1 (1)

−

∑N
j=2αj

∑n
i=1β1βn+1− k

2 a(0)
j (k)

α1

]

+

∑N
j=2αj

∑n
i=1β1βn+1− k

2 a(0)
j (k)

α1
(8) 

Through the IAGO, the forecasting results are: 

⎧
⎨

⎩

a(0)
1 (k) = a(1)

1 (k) − a(1)
1 (k − 1), (k⩾2)

a(0)
1 (1) = a(1)

1 (1), (k = 1)

According to the above Theorem 1 to Theorem 3 derivation process, 
the IA proposed mechanism is considered more from the flexibility 
perspective. It sets the adjusted factors β1 and β2 that adapt more to the 
system sequence development and eliminates complex evaluating the 
strength of old and new information. The selected optimization algo
rithm determines the value of the adaptive factors according to the 
development trend of the system sequence updates. The optimal solu
tion’s constraint condition is the system sequence’s minimum fitting and 
forecasting errors during the factors determined. Under the whole IA 
mechanism, this paper highlights the flexible feature in the action pro
cesses of β1 and β2. In information accumulation, the enhancement and 
weakening of the action of new and old information are determined 

more around the system sequence updating rather than artificial 
settings. 

3.3. The proposed model and its relations with existing methods 

Based on the proposed IAGM(1,N), this paper constructs a compre
hensive and optimized multivariate grey model (IACOGM(1,N)). The 
optimized parameters contain the initial and background values and 
nonlinear optimization. The grey model usually sets the initial value as a 
and the background value as 0.5. However, Xie et al. (2009) proved that 
a correction factor can optimize the initial value. Wang et al. (2010) 
proposed the idea of calculating background values based on solving 
undetermined parameters with weights. Wang (2017) extended the 
combination of power parameters and grey models to describe the 
nonlinear feature optimization. Therefore, considering these optimized 
aspects, this paper proposes the final IACOGM(1,N).   

Considering that the hyperparameter solution of IACOGM(1,N) is 
complex and WOA has excellent stability and convergence, this paper 
selects MAPE as the constraint target, and WOA solves the parameters 
optimization. The solving constraints are as Eq.(10). 

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− s1(2) β1β2
2a(0)

2 (1) + β1β2a(0)
2 (2) ... β1β2

2a(0)
j (1) + β1β2a(0)

j (2)

− s1(3) β1β3
2a(0)

2 (1) + β1β2
2a(0)

2 (2) + β1β2a(0)
2 (3) ... β1β3

2a(0)
j (1) + β1β2

j a(0)
2 (2) + β1β2a(0)

j (3)

... ... ... ...

− s1(k)
∑n

i=1
β1βn+1− k

2 a(0)
2 (k) ...

∑n

i=1
β1βn+1− k

2 a(0)
j (k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a(0)
1 (2)

a(0)
1 (3)
...

a(0)
1 (n)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(1)
1 (k) = e− α1(k− 1)

[

a(0)
1 (1) + ξ −

∑N
j=2αj

∑n
i=1β1βn+1− k

2 (aj(k))rj− 1

α1

]

+

∑N
j=2αj

∑n
i=1β1βn+1− k

2 (aj(k))rj− 1

α1

s1(k) = (1 − λ) × a(1)
1 (k − 1) + λ × a(1)

1 (k)

a(0)
1 (k) = a(1)

1 (k) − a(1)
1 (k − 1)

α̂ = (α1,α2,α3, ...,αN)

(9)   

Y. Ren et al.                                                                                                                                                                                                                                      



Expert Systems With Applications 252 (2024) 124130

6

F(rj, β1, β2, λ, ζ) = argmin(
1
n
∑n

i=1

⃒
⃒
⃒
⃒
⃒

a(0)
1 (i) − â(0)

1 (i)
a(0)

1 (i)

⃒
⃒
⃒
⃒
⃒
) (10) 

Based on the specific values of the undetermined parameters, the 
proposed IACOGM(1,N) can transform to other improved IAGM(1,N) 
derived models flexibly or degenerate to the traditional GM(1,N). 

Property 1. The IACOGM(1,N) can transform to the IAGM(1,N) with 
initial value optimization (IAGM(1,N,ξ)). 

Proof. Let λ = 0.5, r = 1, the Eq.(9) can transform to the IAGM(1,N,ξ) 
as follows.   

Property 2. The IACOGM(1,N) can transform to the IAGM(1,N) with 
background value optimization (IAGM(1,N,λ)). 

Proof. Let ξ = 0, r = 1, the Eq.(9) can transform to the IAGM(1,N, λ) as 
follows.   

Property 3. The IACOGM(1,N) can transform to the IAGM(1,N) with 
power exponential structure optimization (IAGM(1,N,r)). 

Proof. Let ξ = 0, λ = 0.5, the Eq.(9) can transform to the IAGM(1,N,r) 
as follows.   

Property 4. The IACOGM(1,N) can degenerate to the tradional GM(1, 
N) 

Proof. Let ξ = 0, λ = 0.5, r = 1, β1 = β2 = 1, the Eq.(9) can degenerate 
to the GM(1,N). 

⎧
⎪⎪⎨

⎪⎪⎩

a(1)
1 (k) = e− α1(k− 1)

[

a(0)
1 (1) −

∑N
j=2αja

(1)
j (k)

α1

]

+

∑N
j=2αja

(1)
j (k)

α1

s1(k) = [a(1)
1 (k − 1) + a(1)

1 (k)]/2 

Fig. 1 shows the flexible variations between these models. 
Therefore, the proposed multivariable grey model based on the IA 

mechanism may flexibly realize the transformation of different forms 
and change into the traditional GM(1,N). In the realistic study, the 
IACOGM(1,N) may also flexibly adjust the initial values, background 
values, and nonlinear parameters according to the system data infor

mation characteristics. It may transform into an adaptive model struc
ture with the ideal fitting and forecasting accuracy for further 
forecasting research. 

3.4. The modeling procedure and accuracy evaluation 

According to the IA optimization mechanism and transformation 

mode in sections 3.2 and 3.3, Fig. 2 is the modeling process of the 
IACOGM(1,N). 

Step 1. Collect data and group into the system sequence and related 
factor sequences. 

Step 2. Introduce the adaptive factors β1 and β2. Set the related factor 
sequences’ initial, background, and power parameters. Generate new 
grey driver terms based on the proposed IA mechanism. 

Step 3. Set MAPE as the constraint target. Establish the optimized 
control functions for initial, background, and power parameters (ξ, λ, r). 

Step 4. Apply the WOA to calculate and obtain the optimal param
eter solutions through the MAPE test. If the MAPE is < 5 %, the pro
cedure passes. The procedure continues the test loop if the MAPE is > 5 
%. 

Step 5. Reconstruct the traditional GM(1,N) based on the optimal 
parameter solutions to form the proposed IACOGM (1,N). Calculate the 
forecasting results by IAGO. 

⎧
⎪⎪⎨

⎪⎪⎩

a(1)
1 (k) = e− α1(k− 1)

[

a(0)
1 (1) + ξ −

∑N
j=2αj

∑n
i=1β1βn+1− k

2 (a(0)
j (k))

α1

]

+

∑N
j=2αj

∑n
i=1β1βn+1− k

2 (a(0)
j (k))

α1

s1(k) = [a(1)
1 (k − 1) + a(1)

1 (k)]/2

(11)   

⎧
⎪⎪⎨

⎪⎪⎩

a(1)
1 (k) = e− α1(k− 1)

[

a(0)
1 (1) −

∑N
j=2αj

∑n
i=1β1βn+1− k

2 (a(0)
j (k))

α1

]

+

∑N
j=2αj

∑n
i=1β1βn+1− k

2 (a(0)
j (k))

α1

s1(k) = (1 − λ) × a(1)
1 (k − 1) + λ × a(1)

1 (k)

(12)   

⎧
⎪⎪⎨

⎪⎪⎩

a(1)
1 (k) = e− α1(k− 1)

[

a(0)
1 (1) −

∑N
j=2αj

∑n
i=1β1βn+1− k

2 (a(0)
j (k))

rj

α1

]

+

∑N
j=2αj

∑n
i=1β1βn+1− k

2 (a(0)
j (k))

rj

α1

s1(k) = [a(1)
1 (k − 1) + a(1)

1 (k)]/2

(13)   
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This paper selects four calculating methods to evaluate the validity 
and stability of the grey models’ fitting and forecasting test results: Mean 
Square Error (MSE), MAE, Root Mean Square Error (RMSE), Mean Ab
solute Percentage Error (MAPE), and Comprehensive MAPE. 

ComprehensiveMAPE =
(FittingMAPE + TestMAPE)

2  

4. Empirical analysis and results 

4.1. Data description and model establishment 

In Table 1, this paper applies China’s renewable energy generation 
from 2011 to 2022 as the system sequence and the annual output value 
of China’s primary, secondary, and tertiary industries as the related 
factors sequences. 

The development stages of China’s 12th Five-Year Plan and 13th 
Five-Year Plan are 2011 to 2020. This paper selects the renewable 

energy generation of these two development stages as the fitting values 
and the data in 2021 and 2022 as the test values. Finally, this paper 
forecasts China’s renewable energy generation until 2030 based on the 
12th Five-Year Plan and 13th Five-Year Plan data. 

The system sequence is:   

The related factors sequences are:   

The traditional GM(1,N) is: 

104.3+ 0.0048s(1)1 (k) = − 0.0057a(1)
2 (k)+ 0.0013a(1)

3 (k) + 9.3152a(1)
4 (k)

The expression is:    

Fig. 1. The variations between these multivariate grey models.  

A(0)
1 = (104.30, 136.80, 183.80, 229.50, 279.10, 369.50, 502.00, 636.40, 742.00, 863.20)

A(0)
2 = (44781.5, 49084.6, 53028.1, 55626.3, 57774.6, 60139.2, 62099.5, 64745.2, 70473.6, 78030.9)

A(0)
3 = (227035.1, 244639.1, 261951.6, 277282.8, 281338.9, 295427.8, 331580.5, 364835.2, 380670.6, 383562.4)

A(0)
4 = (216123.6, 244856.2, 277983.5, 310654, 349744.7, 390828.1, 438355.9, 489700.8, 535371, 551973.7)
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Fig. 2. The modeling procedure.  

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a(1)
1 (k) = [104.3 − (− 0.0057a(1)

2 (k) + 0.0013a(1)
3 (k) + 9.3152a(1)

4 (k))/0.0048]e[− 0.0048(k− 1) ]

+(− 0.0057a(1)
2 (k) + 0.0013a(1)

3 (k) + 9.3152a(1)
4 (k))/0.0048

a(0)
1 (k) = a(1)

1 (k) − a(1)
1 (k − 1)
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Fig. 3 shows the fitting effect of the traditional GM(1,N). 
This paper improves the GM(1,N) based on the IA mechanism and 

optimization of modeling parameters. Fig. 4 simulates the continuous 
optimization process. 

It is clearly shown in Fig. 3 and Fig. 4 that the IA echanism signifi
cantly improves the fitting accuracy of GM(1,N) and solves the tradi
tional GM(1,N) general application defect. 

According to the proposed IACOGM(1,N) in section 3, the power 
parameters rj are added to the relevant factors for the data nonlinear 
adaption when accumulating the data information. Meanwhile, the 

initial and accumulative adaptive factors β1 and β2 are introduced to 
optimize the accumulation process of the GM(1,N). 

The preliminary form of the IACOGM(1,N) is: 

104.3+ξ+α1s(1)1 (k) =α2

∑10

i=1
β1β(11− k)

2 (a(0)
2 (k))

r2
+α3

∑10

i=1
β1β(11− k)

2 (a(0)
3 (k))

r3

+α4

∑10

i=1
β1β(11− k)

2 (a(0)
4 (k))

r4 

The s(1)1 (k) updates to s(1)1 (k) = (1 − λ)a(0)
1 (k − 1) + λa(0)

1 (k), the 
IACOGM(1,N) expression is:   

As shown in Fig. 5, based on Eq.(9), this section adopts the WOA to 
solve and obtain the optimized parameters of the IACOGM(1,N). 

The modeling parameters and optimized parameters are as follows. 

Table 1 
The renewable energy generation and output value of three major industries in China.  

Year/Data Renewable energy generation Primary industry Secondary industry Tertiary Industry 

Unit  TWh  100 million yuan  100 million yuan  100 million yuan 
2011  104.30  44781.50  227035.10  216123.60 
2012  136.80  49084.60  244639.10  244856.20 
2013  183.80  53028.10  261951.60  277983.50 
2014  229.50  55626.30  277282.80  310654.00 
2015  279.10  57774.60  281338.90  349744.70 
2016  369.50  60139.20  295427.80  390828.10 
2017  502.00  62099.50  331580.50  438355.90 
2018  636.40  64745.20  364835.20  489700.80 
2019  742.00  70473.60  380670.60  535371.00 
2020  863.20  78030.90  383562.40  551973.70 
2021  1152.50  83216.50  451544.10  614476.40 
2022  1367.00  88207.00  473789.90  642727.10 

The output values of three major industries are all from the National Bureau of Statistics of China. 
The renewable energy generation is from the BP Statistical Review of World Energy 2022 and Statistical review of world energy 2023. 

Fig. 3. The fitting effect of the GM(1,N).  

⎧
⎪⎪⎨

⎪⎪⎩

a(1)
1 (k) = (104.3 + ξ −

∑4

j=2
αj

∑10

i=1
β1β(11− k)

2 (a(0)
j (k))

rj
/α1)e− α1(k− 1) +

∑4

j=2
αj

∑10

i=1
β1β(11− k)

2 (a(0)
j (k))

rj
/α1

a(0)
1 (k) = a(1)

1 (k) − a(1)
1 (k − 1)
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Fig. 4. The fitting effect based on the IA accumulation mechanism.  
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⎧
⎪⎪⎨

⎪⎪⎩

α1 = 2.5044
α2 = − 1.8151
α3 = 0.4519
α4 = 0.2534

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 = 0.5850
r2 = 0.5988
r3 = 0.5959
β1 = 1.1936
β2 = 1.7594
λ = 0.6256
ξ = 43.5550 

The final expression of the IACOGM(1,N) for China’s renewable 
energy generation forecasting is:   

Table 2 shows the optimization results with different modeling 
parameters. 

Fig. 6 shows the distribution characteristics of absolute errors be
tween the improved multivariate grey models for the system sequence 
data fitting. 

Compared with these calculating results, the prediction performance 
of the multivariate grey models based on the novel IA mechanism is 

significantly improved. The IA mechanism optimizes the accuracy by 
less than 5 %. It dramatically improves the applicability of the tradi
tional multivariate grey models to data samples. Meanwhile, under the 
IA mechanism, the accuracy of the models derived from the initial value, 
background value, and nonlinearity is 2.45 %, 2.15 %, and 1.93 %, 
respectively. It reveals that each parameter optimization can improve 
the performance of fitting and prediction in different degrees. The 
proposed IACOGM(1,N) performs much better than other single 
optimization-derived models. 

4.2. Comparative effect between different models 

In order to further test the model performance and forecasting ability 
of the IACOGM(1,N), this paper selected the following models for 
comparative testing. These models are GM(1,1,λ), FGM(1,1), NGBM 
(1,1), FANGBM(1,1), GM(1,N), NGM(1,N), ARIMA, and SVM. Table 3 
illustrates the results, and Fig. 7 shows the different fitting and fore
casting effects. Fig. 8 reveals the models’ residual variation. 

Fig. 5. The WOA iterative process and the fitting effect of the IACOGM(1,N).  

Table 2 
The optimized effects under the IA accumulation mechanism.  

Year/Model Actual value IACOGM(1,N) IAGM(1,N) IAGM(1,N,r) IAGM(1,N,λ) IAGM(1,N,ξ) 

Training value 
2011  104.30  104.30  104.30  104.30  104.30  104.30 
2012  136.80  136.19  120.87  120.33  129.66  128.64 
2013  183.80  184.24  186.33  184.59  189.73  183.80 
2014  229.50  233.57  231.03  231.02  235.02  232.92 
2015  279.10  289.50  285.61  289.71  289.82  286.67 
2016  369.50  368.65  363.41  369.50  368.21  364.01 
2017  502.00  494.87  486.36  491.47  493.79  487.81 
2018  636.40  636.40  626.88  628.03  636.50  629.45 
2019  742.00  758.70  751.69  747.83  760.65  755.46 
2020  863.20  863.63  855.93  855.37  861.90  862.69 
MAPE   1.13 %  2.71 %  2.45 %  2.15 %  1.93 %  

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

F(k) = (147.8550 −
∑4

j=2
αj

∑10

i=1
1.1936 × 1.7594(11− k) × a(0)

j (k)/2.5044)×e− 2.5044(k− 1)+

∑4

j=2
αj

∑10

i=1
1.1936 × 1.7594(11− k) × a(0)

j (k)/2.5044

α2 = − 1.8151, α3 = 0.4519, α4 = 0.2534   
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Considering the results of the fitting values, the traditional GM(1,N) 
MAPE is the worst among all the models, reaching 79.43 %. Although 
the fitting accuracy is improved, the MAPE of the fitting result of NGM 
(1,N) is as high as 30.05 %. It indicates that the traditional multivariate 
grey models could not directly forecast. Because of the lack of sample 
size, the fitting and forecasting results of the ARIMA and SVM reflect the 
limitation, with the MAPE and RMSE at 20.76 %, 63.06, 9.60 %, and 
43.79, respectively. 

The forecasting results of these univariate grey models are better 
than the above models. The performance rankings based on the MAPE 
value are the NGBM(1,1), FGM(1,1), GM(1,1,λ), and FANGBM(1,1). 
These grey models also have advantages and disadvantages when 
comparing the MSE and RMSE. Fig. 11 reflects the residual variation. 
The residuals of these grey models change at certain time points 
frequently, such that the capability of these models is not stable. How
ever, all comparable indicators of the proposed IACOGM(1,N) are better 
than these comparison models, and the residual variation fluctuation is 
much lower than in other models. The absolute fluctuation of the re
sidual shows that the change amplitude of IACOGM(1,N) is better than 
others. 

Moreover, combined with the test values, the comprehensive MAPE 
of the proposed IACOGM(1,N) is only 2.60 %, which has the best fore
casting ability among these models. Combining the development of 
fitting and test values, as shown in Fig. 7, the fitting and forecasting 
results of the IACOGM(1,N) maintain a high consistency with the actual 
values. The data development curve is consistent with the actual trend. 
The other grey models, SVM and ARIMA, also have better simulations of 
the development trend than GM(1,N) and NGM(1,N), but there are still 
apparent errors. The comprehensive MAPE of the univariate grey 
models and SVM are all higher than 5 %, and the comprehensive MAPE 
of FANGBM(1,1) is 11.92 %, with a higher error over 10 %. It shows that 
the forecasting accuracy of these models still needs to be improved. 
Fig. 8 reflects that the ARIMA and multivariate grey models have a 
significant fitting error in the early stage. The development trends of GM 
(1,N) are unreasonable in all the progress, with too many errors. It is 
necessary to optimize these models’ parameters further to improve the 
forecasting performance. 

In summary, IACOGM(1,N) is most adaptable to the research 
renewable data sources among the five optimization models established 
based on the IA mechanism. Compared with other forecasting methods 
selected in this paper, IACOGM(1,N) has the best fitting accuracy and 
comprehensive accuracy, which is 1.13 % and 2.60 %. Secondly, GM 
(1,1,λ), FGM(1,1), NGBM(1,1), and FANGBM(1,1), which represent the 
univariate grey models, have the fitting and comprehensive accuracy 
basically within the acceptable range. After that, the SVM, whose fitting 
and comprehensive accuracy are 9.60 % and 11.96 %, is weaker than the 
above models and needs to be improved. Finally, the fitting errors of the 
ARIMA and multivariate grey models without the IA mechanism are 
higher than 20 %, and their forecasting results cannot be referenced 
directly. 

Through these comparisons, this section finds that the proposed IA 
mechanism could significantly improve GM(1,N) ’s adaptability to 
renewable energy data and effectively realize generation forecasting 
during the test period. It could solve the problem that GM(1,N) could not 
directly forecast before. Therefore, applying the proposed IACOGM(1,N) 
to forecast renewable energy generation in China’s plan stages is 
feasible. 

4.3. The forecasting results of the China’s renewable energy generation 

Based on the IACOGM(1,N) established in Section 4.1, this paper 
forecasts China’s renewable energy generation in the middle and late of 

Table 3 
The fitting and forecasting results comparisons.  

(a)The fitting and test results 

Year/Model Actual value IACOGM(1,N) GM(1,1,λ) FGM(1,1) NGBM(1,1) FANGBM(1,1) GM(1,N) NGM(1,N) ARIMA SVM 

Fitting value 
2011  104.30 − − - − − − − − −

2012  136.80 136.19 156.36 143.94 126.04 107.50 112.90 132.38  185.30 −

2013  183.80 184.24 193.61 194.64 178.10 156.12 231.94 238.27  319.70 216.03 
2014  229.50 233.57 239.75 252.80 237.56 219.90 373.70 318.65  280.40 257.54 
2015  279.10 289.54 296.87 320.29 306.61 297.59 493.25 409.64  352.90 317.55 
2016  369.50 368.65 367.61 399.39 387.44 388.85 660.28 514.54  386.80 375.90 
2017  502.00 494.87 455.20 492.70 482.40 493.26 1035.36 661.29  454.70 439.23 
2018  636.40 636.40 563.66 603.23 594.16 610.29 1474.66 837.87  579.60 554.65 
2019  742.00 758.73 697.97 734.51 725.81 739.18 1689.26 987.06  724.10 723.83 
2020  863.20 863.63 864.28 890.73 880.91 879.07 1617.32 1004.02  834.10 895.44 
Test value 
2021  1152.50 1098.20 1070.20 1076.86 1063.64 1028.97 2422.90 1280.85  912.70 1030.27 
2022  1367.00 1320.18 1323.44 1298.82 1240.13 1187.74 1773.20 1385.63  986.60 1185.02  

(b)The comparison results 
Effect/Model IACOGM(1,N) GM(1,1,λ) FGM(1,1) NGBM(1,1) FANGBM(1,1) GM(1,N) NGM(1,N) ARIMA SVM 

MSE  45.80  1147.15  589.133  448.45  383.45  289694.08  21651.20  3976.48  1917.13 
RMSE  6.77  33.87  24.27  21.18  19.58  538.23  147.14  63.06  43.79 
Fitting MAPE  1.13%  6.42%  6.15%  4.89%  6.73%  79.43%  30.05%  20.76%  9.60% 
Comprehensive MAPE  2.60%  5.16%  5.78%  8.50%  11.92%  69.97%  18.15%  24.32%  11.96%  

Fig. 6. The absolute residual box type diagram for the models under the 
IA mechanism. 
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the 14th Five-Year Plan period (2023–2025) and the 15th Five-Year Plan 
period (2026–2030). This paper calculates the output value of China’s 
three major industries in the same period of the related factor sequences 
with the improved grey models. The sequences are updated as follows. 
Table 4 shows the forecasting results from 2023 to 2030.  

Fig. 9 reflects the overall development trend of renewable energy 
generation from 2011 to 2030. 

5. Discussion 

5.1. The development scale analysis 

The forecasting results from 2023 to 2025 show that China’s 
renewable energy generation will reach 1602.38TWh, 1934.80 TWh, 

and 2332.24 TWh. Throughout the 14th Five-Year Plan period, China’s 
renewable energy could grow 19.17 % yearly. According to the 15th 
Five-Year Plan (2026–2030) results, when China’s three major in
dustries maintain the stable development of the current scale and keep 
the trend growth rate, the renewable energy generation will reach 

Fig. 7. The fitting and forecasting effect of the comparison models.  

A(0)
2 = (91573.15, 97035.53, 102818.30, 108940.74, 115423.18, 122287.14, 129555.33, 137251.81)

A(0)
3 = (503491.20, 539193.80, 577398.34, 618282.54, 662036.35, 708862.83, 758979.17, 812617.72)A(0)

4

= (697556.64, 747514.42, 799801.94, 854591.15, 912055.21, 972370.22, 1035716.69, 1102280.71)
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Fig. 8. The residuals of the comparison models.  
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2807.35 TWh, 3375.25 TWh, 4053.96 TWh, 4864.98 TWh, and 5834.02 
TWh with annual growth rate of 20.08 %. Under the development scale 
of the four five-year plans, China’s renewable energy generation may 
grow from 933.50 TWh and 3113.1 TWh to 8388.93 TWh and 20935.56 
TWh. It further reflects the power generation potential of renewable 
energy in China’s energy field and more substantial competitiveness in 
China’s future power market. 

As a significant hydropower country, China develops renewable re
sources and applies its relatively abundant water energy for electricity 
generation. According to China’s 14th Five-Year Renewable Energy 
Development Plan (NDRC, 2020), the Chinese government has proposed 
to achieve a total renewable energy generation target of 3300 TWh 
(including renewable energy and hydropower generation) in 2025. This 

section discusses the following two types with the hydropower devel
opment scales (NBS, 2022) based on the forecasting results in 2024 and 
2025 from Table 4. When the Chinese government sustains the current 
scale of hydropower development, as shown in Fig. 10, China’s renew
able energy generation will reach 3286.99 TWh and 3684.43 TWh in 
2024 and 2025 while maintaining this steady growth. 

Fig. 11 shows the situation that the Chinese government continues to 
promote the development scale of hydropower generation, referring to 
the forecasting results of this paper and the hydropower forecasting 
generation in China from 2021 to 2025 (Zeng et al., 2023), the gener
ation in the following 2023 and 2025 will reach 3167.71TWh, 3561.54 
TWh, and 4019.98 TWh, respectively. It indicates that in 2024, the 
Chinese government may approach the planned target of 3300TWh and 
achieve it before 2025. 

Both of these scenarios reflect China’s positive momentum in 
renewable energy generation. Whether it maintains or promotes hy
dropower development, China can reach its 2025 target ahead of 
schedule. It also shows the high possibility of realizing or exceeding the 
2025 target while maintaining the current development trend of the 
three industries. The rational development of these renewable energy 
sources can also relieve the pressure on China’s hydroelectric power 
system. 

Based on the conversion index of electricity and coal in China Sta
tistical Yearbook and the Carbon emissions coefficient of coal (Wang & 
Ye, 2017), Table 5 shows the future carbon emissions reduction from 
renewable energy generation and hydropower generation in 
2023–2030. As shown in Fig. 12, considering the comprehensive envi
ronmental protection and dual carbon goals, the Chinese government 
should flexibly control the hydropower industry and increase renewable 
energy development to compensate for the differences in carbon 
reduction between the two scenarios. 

Table 4 
The China’s renewable energy generation forecasting results (2023–2030).  

Year 2023 2024 2025 2026 2027 2028 2029 2030 

Generation (TWh)  1602.38  1934.80  2332.24  2807.35  3375.25  4053.96  4864.98  5834.02  

Fig. 9. The development trend of China’s renewable energy generation.  

Fig. 10. The total renewable energy generation situation for sustaining the 
scale of hydropower development. 

Table 5 
China’s Carbon emission reduction based on clean energy (2023–2030).  

Year 2023 2024 2025 2026 2027 2028 2029 2030 

Reduction (MtCO2)  142.30  171.83  207.13  250.70  301.41  362.02  434.44  520.97 
Scenario 1 (MtCO2)  262.38  291.91  327.21  370.78  421.49  482.1  554.52  641.05 
Scenario 2 (MtCO2)  281.31  316.29  357.01  407.02  463.48  530.01  608.52  701.34  
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5.2. Policy implication 

The in-depth development of new renewable energy sources is the 
novel core driving force leading China towards a clean, green, low- 
carbon ecological economy. This section makes recommendations 
based on the forecasting results and discussion analysis. 

From the generation forecasting results, China’s renewable energy 
generation will increase from 1602.38 TWh to 2332.24 TWh during the 
14th and 15th Five-Year Plan period and to 5834.02 TWh by 2030. It 
reflects a noticeable annual growth rate from 19.17 % to 20.08 %. 
Therefore, the Chinese government should strengthen its support for 
future renewable energy projects to achieve or exceed the forecasted 
growth of 20.08 %. From the policy perspective, the Chinese govern
ment should formulate relevant policies to develop renewable energy. 
The direct way is to actively provide financial incentives and tax 
reduction support. From the development perspective, the Chinese 
government may construct renewable energy infrastructure according to 
local conditions and establish renewable energy demonstration zones 
based on China’s regional characteristics. It may comprehensively 
realize regional multi-energy complementarity and nearby balance in 
China. The regional government may construct demonstration zones for 
wind, photovoltaic, and geothermal energy in China’s Northeast, North, 

and Northwest areas. Also, it is feasible to actively establish offshore 
wind power and tidal energy generation platforms along the southeast 
coast. 

Under the scenarios of hydropower scale between promotion and 
maintenance, the total renewable generation may reach 3684.43TWh 
and 4019.98TWh in 2025. The forecasting results suggest that a modest 
short-term slowdown in investment for hydropower may not affect or 
delay China’s 14th Five-Year Plan goal of 3300TWh by 2025. Therefore, 
during this period, the Chinese government should further increase the 
development of mainstream renewable energy industries, such as wind 
power and photovoltaic, based on the current development trend of the 
three major industries. At the same time, it is also important to explore 
potential energy innovation technologies such as hydrogen, geothermal, 
and biomass energy and reduce dependence on hydropower. 

However, from the perspective of carbon emission reduction, the 
carbon emission reduction may reach 701.34MtCO2 and 641.05MtCO2, 
as forecasted by the above scenarios, by 2030. It shows significant po
tential in China’s renewable energy development to reduce carbon 
emissions. The forecasting result also suggests that slowing hydropower 
development may lead to a carbon reduction gap of about 60.29 MtCO2 
in 2030, which needs to be compensated. Therefore, China should focus 
on its hydropower infrastructure’s limitations and damage to the local 
ecology, but this does not mean stopping its development efforts alto
gether. In the future, the Chinese government should steady the con
struction of hydropower bases and strengthen the development of 
hydraulic pumped storage to stabilize the current scale of hydropower 
generation. Also, the Chinese government should promote the green 
transformation of major industries such as transportation and con
struction. The core aim is to achieve carbon reduction support for 
renewable energy through developing strict environmental standards 
and promoting low-carbon technologies from social civilization 
improvement. 

6. Conclusion 

This paper first creates a novel modeling method for the grey system 
to optimize the shortcomings of the traditional multivariable grey 
models in the information accumulation process. Under the designed 
mechanism, the two adaptive factors can form a flexible accumulation 
mechanism that adapts to the system sequence characteristics when 
accumulating the related factor sequences. Combined with the 
comprehensively optimized modeling parameters, the proposed 
IAGOGM(1,N) improves the fitting MAPE of the traditional GM(1,N) 
from 79.43 % to 1.13 %. It also optimizes the comprehensive MAPE from 
69.97 % to 2.60 %. The proposed mechanism dramatically improves the 
practical applicability of GM(1,N) in the complex development system 
under the multiplicity influence of multivariate factors. The proposed 
IAGOGM(1,N) has initially formed a forecasting framework to explore 
the relationship between economic development and renewable energy 
in China. 

The forecasting results by the IACOGM(1,N) from 2023 to 2030 
reveal that China’s renewable energy will maintain a rapid and stable 
growth rate. The generation is expected to exceed 20000TWh during the 
15th Five-Year Plan period, showing the future colossal potential. The 
Chinese government should further strengthen the innovation and pro
motion of renewable and other clean energy to reach the China Carbon 
Peak in 2030 and construct a solid foundation for China’s future green 
ecological civilization. 
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