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Abstract

Cross-efficiency evaluation in data envelopment analysis is an effective way to rank decision-making units
(DMUs). However, different cross-efficiency evaluation models derived from different perspectives generate
different cross-efficiency rankings. The information resulting from the various perspectives may be valuable
and should not be ignored. In this paper, we propose an innovative composite method for ranking DMUs
by calculating the Shannon entropy of the obtained cross-efficiency scores derived from the perspectives
of satisfaction and consensus. Also, we adopt grey incidence analysis to compare the rankings of different
cross-efficiency models. The calculation procedure using Shannon entropy and grey incidence analysis is
illustrated on an example to generate the composite ranking result and compare it to other cross-efficiency
model rankings. The cross-efficiency ranking using both satisfaction and consensus information provides
a new comprehensive perspective in group evaluation. A practical example is used to show that the cross-
efficiency results obtained from the composite perspective of satisfaction and consensus should be widely
accepted in practical decision-making.

Keywords: Cross efficiency; Data envelopment analysis; Shannon entropy; Grey incidence analysis

1. Introduction

Data envelopment analysis (DEA), pioneered by Charnes et al. (1978), is a nonparametric method
for measuring the efficiency of a group of homogeneous decision-making units (DMUs) with mul-
tiple inputs and outputs (Cook and Seiford, 2009). Over the past 40 years, DEA methods have been
attracting increasing attention from scholars in various fields (Liu et al., 2016; Sueyoshi et al., 2017;
Emrouznejad and Yang, 2018; Emrouznejad et al., 2019; Ma et al., 2020; Tao et al., 2021).
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However, because the self-evaluation enables DMUs to measure their efficiency using the weights
most beneficial to themselves, all efficient DMUs (usually more than one) cannot be discriminated
from each other (Wang and Chin, 2010b; Ekiz and Şakar, 2020). The traditional DEA models will
inevitably be caught in the absence of discrimination power. At the same time, it may be extremely
unrealistic to weigh the self-evaluation, which results in a misperception of DMU efficiency.

The commonly used, cross-efficiency evaluation (Sexton et al. 1986) was proposed as an extension
to DEA to increase the discriminatory power and make weight choices more acceptable (Wang and
Chin, 2010a). Without pre-defining any weight constraints, cross-efficiency evaluation can eliminate
unrealistic weights (Anderson et al., 2002) and also determine the unique rankings of each DMU
(Doyle and Green, 1995). Therefore, the cross-evaluation approach has been employed in a variety
of real scenarios (Wu et al., 2021).

Shannon entropy plays a central role and greatly influences information theory (Shannon, 1948).
The amount or value of information is one of the decisive factors in decision-making, according
to the scientific root of entropy (Lee, 2019). To determine the importance degree from various
cross-efficiency models, Soleimani-Damaneh and Zarepisheh (2009) worked out an efficiency index
by combining the derived efficiency scores to rank DMUs. Grey incidence analysis is an important
system analysis method, derived from grey system theory (Deng, 1989). The connotation of grey
incidence analysis technology is: obtain the difference information between sequences and estab-
lish the difference information space; calculate the difference information comparison measure;
and construct the order relation between the factors. Therefore, grey incidence degree can be
explained as the more similar the curves are, the higher the incidence degree between sequences
(Liu et al., 2017b).

In fact, different cross-efficiency evaluation models derived from different perspectives generate
different cross-efficiency rankings, and the information contained in the different perspectives
should not be ignored. Cross-efficiency ranking considering both satisfaction and consensus in-
formation provides a new comprehensive perspective in group evaluation. Therefore, we introduce
a composite method by calculating the Shannon entropy of the cross-efficiency scores derived
from the method of Wu et al. (2016b) and Wang et al. (2017) for ranking DMUs. Another point
of concern is the ranking comparison between different cross-efficiency models. Grey incidence
analysis is an order relation model; it is a simple and reliable method used in system analysis. In
this paper, we use the synthetic incidence degree to compare the ranking results among different
cross-efficiency models.

The remainder is organized as follows. Section 2 reviews the related literature. Section 3 presents
preliminary knowledge about the corresponding cross-efficiency approach. Section 4 introduces the
ranking method based on satisfaction degree and consensus degree, respectively. Section 5 provides
the algorithms of Shannon entropy and grey incidence analysis. Section 6 presents an application
of the composite method and comparation. Conclusions are provided in Section 7.

2. Literature review

As an effective method in DEA ranking, cross-efficiency evaluation has made great progress. De-
spite the significant superiority and wide applications of cross-efficiency, the problem of non-
uniqueness of optimal weights has become one of the main shortfalls (Doyle and Green, 1994). To
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alleviate this problem, Sexton et al. (1986) introduced the secondary goal models, and Doyle and
Green (1994) presented the most well-known and commonly adopted models, that is, the aggres-
sive and benevolent cross-efficiency models. Inspired by this idea, Liang et al. (2008a) extended the
work of Doyle and Green (1994) and introduced several secondary goal programming. Wang and
Chin (2010b) further worked out alternative cross-efficiency models. Considering both desirable
and undesirable targets, Wu et al. (2016a) presented secondary goal extension models for weight se-
lection. Recently, Davtalab-Olyaie (2019) proposed alternative cross-efficiency models considering
the cardinality of the set of “satisfied DMUs.”

Another research stream of the secondary goal functions is the neutral model (Wang and
Chin, 2010a; Wang et al., 2011a), which looks only from the viewpoint of the evaluated DMU
(Wu et al., 2016b). Liu et al. (2017a) provided a revised neutral DEA model. However, Shi et al.
(2019) recently considered the situation that each DMU has a neutral attitude to its peers in the
cross-efficiency evaluation process. Considering the basic two-stage network system, Örkcü et al.
(2019) extended the technique of neutral cross-efficiency. Besides, the study of game cross-efficiency
is a highlight in the evolution process of cross-efficiency. Liang et al. (2008b) constructed the game
cross-efficiency model and an iteration algorithm in a pioneering way. Recently, Liu et al. (2017c)
proposed an aggressive game cross-efficiency method. Hinojosa et al. (2017) suggested to rank
efficient DMUs using cooperative game theory and Shapley value. Also, the mean-maverick game
cross-efficiency approach was presented by Essid et al. (2018) for portfolio selection. Örkcü et al.
(2020) proposed iterative optimistic-pessimistic DEA procedure to extend the game cross-efficiency
method.

The integration of the ultimate cross-efficiency is another significant issue. However, the arith-
metic average method (the most commonly adopted) can not analysis the correlation between
weights and cross-efficiency scores (Wu et al., 2021). Additionally, many scholars have studied
the aggregation approaches in cross-efficiency from the perspective of entropy weight and evalu-
ation consistency and preference. Wu et al. (2012) introduced the idea of using Shannon entropy to
cross-efficiency aggregation. Yang et al. (2013) combined the evidential-reasoning method to cross-
efficiency aggregation, reflecting the decision maker’s preference or value judgments. Song et al.
(2017) integrated the MAX and MIN cross-efficiency models based on entropy weight.

In real-world applications, cross-efficiency is treated as a decision-making technique to DMUs
ranking (Liu et al., 2019a). According to this idea, Wang et al. (2011b) provided neutral cross-
efficiency models based on multiple criteria decision analysis. Liu et al. (2019a) adopted prospect
theory to investigate cross-efficiency and captured the nonrational psychological aspects of a
decision-maker facing risk. Inspired by this idea, Fang and Yang (2019) and Fan et al. (2019b)
also extended the cross-efficiency methods based on prospect theory. For other recent studies of
cross-efficiency evaluation, the reader can refer to Puri and Verma (2020), Chen et al. (2020), Chu
et al. (2019), Li et al. (2018), Liu et al. (2019b), and Liu (2018).

The cross-efficiency method allows self-evaluation and peer-evaluation of all DMUs, which
together constitute a group of evaluation groups. Therefore, the nature of cross-efficiency evalu-
ation is a special group evaluation, and the consensus of evaluation is ignored by many scholars
(Wang et al., 2017; Xia et al., 2017; Ang et al., 2018). In addition, the satisfaction degree should be
considered in order to make the results more acceptable to all the DMUs (Wu et al., 2016b). The
literature contains no previous work on combining the perspectives of satisfaction and consensus
degrees in cross-efficiency ranking. Typically, each way of determining the weights generates
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different rankings, and each of the models and viewpoints might have valuable information that
should not be ignored (Lee, 2019).

In this paper, we consider the satisfaction and consensus degree for cross-efficiency ranking. Our
method uses Shannon entropy to make full use of the information contained in cross-efficiency
models. Xie et al. (2014) improved traditional DEA models using Shannon’s entropy. Si and Ma
(2019) proposed a combined relative entropy and grey incidence method to rank DMUs in cross-
efficiency. Considering variable returns to scale, Su and Lu (2019) proposed an entropy-based cross-
efficiency. Based on Shannon entropy, Karagiannis and Karagiannis (2020) presented a weighting
scheme for constructing composite indicators. Besides, some practical applications are studied by
scholars combining DEA and Shannon’s entropy (Bian and Yang, 2010; Lo Storto, 2016; Lo Storto,
2018; Ang et al., 2021; Behdani and Darehmiraki, 2019). In addition, the similarity of the sequence
curves and the order relation will be concluded through grey incidence analysis. This composite
method provides a solution to the dilemma of which model to choose when faced with similar
perspectives.

3. Preliminary knowledge of cross-efficiency evaluation

Suppose that each DMUj ( j = 1, 2, . . . , n) produces outputs yr j (r = 1, 2, . . . , s) using
inputsxi j (i = 1, 2, . . . , m). For DMUd (d = 1, 2, . . . , n) under evaluation, the efficiency score
θdd can be measured by the CCR model, named by the initials of the three authors’ names,
Charnes, Cooper, and Rhodes (Charnes et al., 1978), as follows:

max
s∑

r=1

urd yr j = θdd ,

s.t.
m∑

i=1

vid xi j −
s∑

r=1

urd yr j ≥ 0, j = 1, 2, . . . , n,

m∑
i=1

vid xi j = 1, (1)

vid ≥ 0, i = 1, 2, . . . , m,

urd ≥ 0, r = 1, 2, . . . , s,

where urd (r = 1, 2, . . . , s) and vid (i = 1, 2, . . . , m) are the weights assigned to the s outputs and m
inputs, respectively.

We then can get a group of optimal weights u∗
rd (r = 1, 2, . . . , s) and v∗

id (i = 1, 2, . . . , m) for each
DMUd . The sum θ∗

dd = ∑s
r=1 u∗

rd yr j is the CCR-efficiency of DMUd , representing the optimal rel-
ative efficiency of DMUd by self-evaluation. If θ∗

dd = 1 and all the optimal weights u∗
rd and v∗

id are
positive, then DMUd is called CCR-efficient.

We use the respective optimal weights of outputs and inputs of model (1) for a given DMUd to
calculate the cross-efficiency scores. The traditional cross-efficiency ofDMUj ( j = 1, 2, . . . , n, j �=
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Table 1
Cross-efficiency matrix of the decision-making units (DMUs)

Rating DMUd

Rated DMUj 1 2 3 … … n Mean

1 θ11 θ21 θ31 … … θ1n θ1

2 θ12 θ22 θ32 … … θ2n θ2

3 θ13 θ23 θ33 … … θ3n θ3

… … … … … … … …
… … … … … … … …
n θ1n θ2n θ3n … … θnn θn

d ) peer-evaluated byDMUd (d = 1, 2, . . . , n), which we denote by θd j , can be obtained as
follows:

θd j =
∑s

r=1 u∗
rd yr j∑m

i=1 v∗
id xi j

, d, j = 1, 2, . . . , n, d �= j. (2)

Model (1) must be solved n times for a target DMUj to acquire the cross-efficiency scores of all
DMUs. Consequently, each DMU obtains the optimal CCR-efficiency and n – 1 cross-efficiency
scores. Table 1 shows the n × n cross-efficiency matrix, where the diagonal elements are the CCR-
efficiency scores. For each row, θd j is the cross-efficiency score of DMUj using the weights that
DMUd has chosen.

The average cross-efficiency of DMUj is defined as Sexton et al. (1986), which measures the
overall performance appraised by all the DMUs as listed in the last column of Table 1.

CEj = 1
n

n∑
d=1

θd j, j = 1, 2, . . . , n. (3)

4. Cross-efficiency ranking method based on satisfaction and consensus degrees

In this section, we present well-known methods to calculate cross-efficiency based on satisfaction
(Wu et al., 2016b) and consensus degrees (Wang et al., 2017).

4.1. Cross-efficiency based on satisfaction degree

Wu et al. (2016b) proposed the cross-efficiency evaluation approach based on the satisfaction de-
grees, which contains a maximin model and two algorithms. For each DMUd , the possible optimal
weight set selected by the CCR model, which is not unique, and can be defined as Wd :
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Wd =
{

(vd , ud )|
m∑

i=1

vd xi j −
s∑

r=1

ud yr j ≥ 0,

θ∗
d

m∑
i=1

vd xi j −
s∑

r=1

ud yr j = 0,

m∑
i=1

vd xi j = 1, ∀ j, (4)

vid ≥ 0, i = 1, 2, . . . , m, urd ≥ 0, r = 1, 2, . . . , s

}
.

Therefore, the maximum and minimum cross-efficiencies for DMUk (k = 1, 2, . . . , n) corre-
sponding to DMUd can be calculated using any possible optimal weight set Wd as follows:

Edk (Edk) = max(min)
s∑

r=1

ud yr j,

s.t. θ∗
d

m∑
i=1

vid xi j −
s∑

r=1

urd yr j = 0,

m∑
i=1

vid xi j −
s∑

r=1

urd yr j ≥ 0, (5)

m∑
i=1

vid xi j = 1, j = 1, 2, . . . , n,

vid ≥ 0, i = 1, 2, . . . , m,

urd ≥ 0, r = 1, 2, . . . , s.

The possible optimal weight set Wd can be transformed into the following equivalent based on
the results of model (5):

W trans
d =

{
(vd , ud )|Ed j

m∑
i=1

vd xi j −
s∑

r=1

ud yr j − s+
d j = 0,

Ed j

m∑
i=1

vd xi j −
s∑

r=1

ud yr j + s−
d j = 0,

θ∗
d

m∑
i=1

vd xi j −
s∑

r=1

ud yr j = 0,

m∑
i=1

vd xi j = 1, (6)

vid ≥ 0, i = 1, 2, . . . , m, urd ≥ 0, r = 1, 2, . . . , s,

s+
d j ≥ 0, s+

d j ≥ 0, j = 1, 2, . . . , n

}
.
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When DMUd tries to select a set of optimal weights from W trans
d , any other DMUj will prefer

that its cross-efficiency be close to Ed j and be far away from Ed j . Based on this observation, Wu
et al. (2016b) defined the satisfaction degree of DMUj toward the set of optimal weights (vd , ud ) of
DMUd selected from W trans

d as follows:

ϕdj =
∑s

r=1ud yrj/
∑m

i=1vd xij − Edj

Edj − Edj

, Ēdj �= Edj, ∀ j. (7)

It is obvious that ϕd j ∈ [0, 1]. When ϕd j = 1, the new optimal weight set of DMUd creates Ed j .
Similarly, if the new optimal weight set of DMUd creates Ed j , then ϕd j= 0. It should be noted that
Ed j = Ed j indicates that the cross-efficiency of DMUj related to DMUd will be fixed.

Based on the benevolent point of view, Wu et al. (2016b) proposed the following model (8) to
select an optimal weight for each DMUd :

max min
(vd ,ud )Ed j �=Ed j

s−
d j

s+
d j + s−

d j

s.t. Ed j

m∑
i=1

vd xi j −
s∑

r=1

ud yr j − s+
d j = 0,

Ed j

m∑
i=1

vd xi j −
s∑

r=1

ud yr j + s−
d j = 0,

θ∗
d

m∑
i=1

vd xi j −
s∑

r=1

ud yr j = 0,

m∑
i=1

vd xi j = 1,

vid ≥ 0, i = 1, 2, . . . , m, urd ≥ 0, r = 1, 2, . . . , s,

s+
d j ≥ 0, s+

d j ≥ 0, Ed j �= Ed j, j = 1, 2, . . . , n.

(8)

By letting �d = minEd j �=Ed j

s−
d j

s+
d j+s−

d j
, model (8), which is a multi-objective programming problem,

can be transformed into the following single-objective model:

max
(vd ,ud )

�d

s.t. Ed j

m∑
i=1

vd xi j −
s∑

r=1

ud yr j − s+
d j = 0,

Ed j

m∑
i=1

vd xi j −
s∑

r=1

ud yr j + s−
d j = 0,

θ∗
d

m∑
i=1

vd xi j −
s∑

r=1

ud yr j = 0,

m∑
i=1

vd xi j = 1,
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s−
d j

s+
d j + s−

d j

≥ �d , (9)

vid ≥ 0, i = 1, 2, . . . , m, urd ≥ 0, r = 1, 2, . . . , s,

s+
d j ≥ 0, s+

d j ≥ 0, Ed j �= Ed j, j = 1, 2, . . . , n.

Therefore, an optimal set of weights that maximizes all the other DMUs’ satisfaction degrees can
be generated for each DMUd by solving model (9). For each DMUj , the satisfaction cross-efficiency
related to DMUd can be defined as

Esatis
d j =

∑s
r=1 u∗

rd yr j∑m
i=1 v∗

id xi j
, d, j = 1, 2, . . . , n. (10)

Then, the satisfaction cross-efficiency score of DMUj can be obtained using the following for-
mula (11):

Esatis
j = 1

n

n∑
d=1

∑s
r=1 u∗

rd yr j∑m
i=1 v∗

id xi j
, j = 1, 2, . . . , n. (11)

4.2. Cross-efficiency based on consensus degree

Wang et al. (2017) proposed maximizing consensus as the secondary goal to solve the weight diver-
sity problem. In other words, the secondary goal will minimize the sum of the distance between the
self-evaluation efficiency score of the given DMUk and the efficiency scores of all the other DMUs
evaluated by DMUk.

Therefore, we can construct the secondary goal model to evaluate DMUj as follows:

min
n∑

d=1

(θ c
d − θd j ),

s.t. θd j =
∑s

r=1 urd yr j∑m
i=1 vid xi j

≤ 1,

θ j j = θ c
j , j = 1, 2, . . . , n,

urd ≥ 0, r = 1, 2, . . . , s,

vid ≥ 0, i = 1, 2, . . . , m,

(12)

where θ c
d and θd j denote the self-evaluation and peer-evaluation scores, respectively. It is obvious

that θ c
d − θd j ≥ 0, where θ c

d is a known constant. Therefore, the objective function of model (12) is
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equivalent to max
∑n

d=1 θd j , that is, max
∑n

d=1 (
∑s

r=1 urd yr j/
∑m

i=1 vid xi j ). Then we can transform
the objective function into formula (13):

max
n∑

d=1

θd j =
n∑

d=1

(
s∑

r=1

urd yr j −
m∑

i=1

vid xi j

)
=

s∑
r=1

(
urd

n∑
d=1

yr j

)
−

m∑
i=1

(
vid

n∑
d=1

xi j

)
. (13)

Thus, model (12) can be transformed as follows:

max
s∑

r=1

(
urd

n∑
d=1

yr j

)
−

m∑
i=1

(
vid

n∑
d=1

xi j

)

s.t.
m∑

i=1

vid xi j = 1, j = 1, 2, . . . , n,

s∑
r=1

urd yr j −
m∑

i=1

vid xi j ≤ 0,

s∑
r=1

urd yr j − θ c
j

m∑
i=1

vid xi j = 0,

urd ≥ 0, r = 1, 2, . . . , s,

vid ≥ 0, i = 1, 2, . . . , m.

(14)

Consensus refers to the tendency of individuals in group evaluation to have consistent (or similar)
opinions on evaluation objects. We use the conventional vector similarity method to measure group
consensus λ j .

The similarity value between DMUj ’s individual and comprehensive evaluations (i.e., the average
of cross-efficiency scores) can be measured by formula (15):

λ j =
∑n

d=1 [(θd j − Bd )(CEj − Ā)]√∑n
d=1 (θd j − Bd )2 ×

√∑n
d=1 (CEj − Ā)

2
, j = 1, 2, . . . , n, (15)

where Ā = ∑n
d=1 CEj/n, d = 1, 2, . . . , n is the average integrated efficiencies of all DMUs.

Then we can calculate the average score of the weighted cross-efficiency as follows:

ςd =
∑n

j=1 λ jθd j∑n
j=1 θd j

, d = 1, 2, . . . , n, (16)

where λ j ( j = 1, 2, . . . , n) is the weight of the jth criterion. The weighted cross-efficiency scores ςd
are then used to rank the DMUs.
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5. The procedures of Shannon entropy and grey incidence analysis

5.1. Combination of cross-efficiencies with Shannon entropy

We use the algorithm for Shannon entropy summarized by Lee (2019) to combine the cross-
efficiencies based on satisfaction and consensus degrees for DMU ranking.

There are n DMUs and q cross-efficiency models, and formula (17) shows the cross-efficiency
matrix En×q. Therefore, the approach using Shannon entropy for DMUs ranking is presented as
follows.

Step 1: Obtain the satisfaction cross-efficiency and consensus cross-efficiency scores.
Step 2: Compute the cross-efficiency matrix En×q:

E =

⎡
⎢⎢⎢⎢⎣

E11 E12 . . . E1q
E21 E22 . . . E2q
E31 E32 . . . E3q
. . . . . . . . . . . .

En1 En2 . . . Enq

⎤
⎥⎥⎥⎥⎦ . (17)

Step 3: Normalize the cross-efficiency matrix as follows:

Ê = Ej p∑n
j=1 Ej p

, j = 1, 2, .., n, p = 1, 2, . . . , q. (18)

Step 4: Compute the Shannon entropy Hp for each cross-efficiency model as

Hp = −(lnn)−1
n∑

j=1

Ê j p ln Ê j p, p = 1, 2, . . . , q, (19)

where (lnn)−1 refers to the Shannon entropy constant.

Step 5: Set Dp = 1 − Hp as the diversification degree for each cross-efficiency evaluation model.
Step 6: Compute the importance degree for model Cp, and assume wp = Dp/

∑q
p=1 Dp, p =

1, 2, . . . , q as the weight coefficient of model Cp.
Step 7: Compute the comprehensive cross-efficiency evaluation scores EC∗

j = ∑q
p=1 wpEj p, j =

1, 2, . . . , n. The larger the value of EC∗
j , the better the DMU.

5.2. Comparison among cross-efficiency scores through grey incidence analysis

The synthetic degree of incidence reflects the similarity degree between the zigzag lines of Xi and
Xj , and the closeness degree between the change rates of Xi and Xj with respect to their individual
values (Liu et al., 2017b). It is an index that describes relatively completely the closeness relationship
between sequences.
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Step 1: Define incidence and construct index sequence. Assume that Xi is a system fac-
tor and its observation value at the ordinal position k is xi(k), k = 1, 2, . . . , n. Then Xi =
(xi(1), xi(2), . . . , xi(n)) is referred to as the behavioral sequence of factor Xi. Xi and Xj can rep-
resent the sequence of cross-efficiency scores of the specific cross-efficiency models, which are
denoted as

Xi = (xi(1), xi(2), . . . , xi(n)) and Xj = (xj (1), xj (2), . . . , xj (n)).

Step 2: Calculate the initial image. Let D1 be the initialing operator, and XiD1 =
(xi(1)d1, xi(2)d1, . . . , xi(n)d1), where

xi(k)d1 = xi(k)
/

xi(1), xi(1) �= 0, k = 1, 2, . . . , n.

Then we can calculate the initial images X ′
i and X ′

j , which are defined as

X ′
i = (x′

i(1), x′
i(2), . . . , x′

i(n)) and X ′
j = (x′

j (1), x′
j (2), . . . , x′

j (n)).

Step 3: Calculate the zero-starting point image. Let D2 be the zero-starting point operator that satis-
fies XiD2 = (xi(1)d2, xi(2)d2, . . . , xi(n)d2) and xi(k)d2 = xi(k) − xi(1), k = 1, 2, . . . , n. Then, for
the absolute incidence degree, we can calculate the zero-starting point image X 0

i and X 0
j as fol-

lows:

[X 0
i = (x0

i (1), x0
i (2), . . . , x0

i (n)) and X 0
j = (x0

j (1), x0
j (2), . . . , x0

j (n)).

For the relative incidence degree, we should use the method in step 2 to calculate the zero-starting
point image X

′0
i and X

′0
j as follows:

X
′0
i = (x

′0
i (1), x

′0
i (2), . . . , x

′0
i (n)) and X

′0
j = (x

′0
j (1), x

′0
j (2), . . . , x

′0
j (n)).

Step 4: Calculate the absolute incidence degree εi j and the relative incidence degree γi j . Following
the above steps, we can calculate the absolute incidence degree εi j as follows:

εi j = 1 + |si| + ∣∣s j
∣∣

1 + |si| + ∣∣s j
∣∣ + ∣∣s j − si

∣∣ i ≤ j. (20)

Here, |si|, |s j|, and |s j − si| can be determined as follows:

∣∣s j
∣∣ =

∣∣∣∣∣
n−1∑
k=2

x0
j (k) + 1

2
x0

j (n)

∣∣∣∣∣ ,

|si| =
∣∣∣∣∣

n−1∑
k=2

x0
i (k) + 1

2
x0

i (n)

∣∣∣∣∣ ,
∣∣s j − si

∣∣ =
∣∣∣∣∣

n−1∑
k=2

(x0
j (k) − x0

i (k)) + 1
2

(x0
j (n) − x0

i (n))

∣∣∣∣∣ .
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Similarly, we can calculate the relative incidence degree γi j as follows:

γi j =
1 + ∣∣s′

i

∣∣ +
∣∣∣s′

j

∣∣∣
1 + ∣∣s′

i

∣∣ +
∣∣∣s′

j

∣∣∣ +
∣∣∣s′

j − s′
i

∣∣∣ , i ≤ j. (21)

The elements of formula (19) can be replaced, respectively, as illustrated in step 3.

Step 5: Calculate the synthetic grey incidence degree. It can be calculated by formula (20). Following
the practice of many researchers, we set θ = 0.5.

ρi j = θεi j + (1 − θ )γi j . (22)

By the above steps, we obtain the following grey incidence matrix R, which is an upper triangular
matrix. In this matrix, the synthetic grey incidence degrees are rii = 1, i = 1, 2, . . . , n:

R =

⎡
⎢⎢⎣

r11 r12 . . . r1n
r22 . . . r2n

. . . . . .

rnn

⎤
⎥⎥⎦ . (23)

6. An application to passenger airline ranking

We provide a practical example to illustrate the combination of the satisfaction and consensus
cross-efficiency scores based on Shannon entropy. Then, we use the synthetic grey incidence degree
to compare the rankings of different cross-efficiency models.

Wang and Chin (2010a) provide a small example to investigate the neutral cross-efficiency scores
of 14 passenger airlines. These major international passenger airlines are evaluated with three in-
puts and two outputs. Table 2 shows the input and output data of the 14 DMUs, together with
their CCR-efficiency scores. From the last column of Table 2, we can see that seven DMUs are
evaluated as efficient, and we cannot distinguish them any further. Based on the CCR model, the
cross-efficiency matrix is listed in Table 3.

6.1. Results of the composite method

Following the algorithm listed in Section 5.1, we can calculate the composite cross-efficiency of the
two methods based on the Shannon entropy.

Step 1: We employ the two methods to calculate the cross-efficiency scores of the 14 passenger
airlines. The results of the two methods introduced in Section 4 are listed in Table 4.

Step 2: The elements of the cross-efficiency matrix En×q stem from the third and the fifth columns
of Table 4.

Step 3: The normalized cross-efficiency scores are listed in columns 2–3 of Table 5.

© 2021 The Authors.
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Table 2
Data for 14 international passenger airlines

Inputs Outputs

Airline (DMU) x1 x2 x3 y1 y2 CCR-efficiency

1 5723 3239 2003 26,677 697 0.8684
2 5895 4225 4557 3081 539 0.3379
3 24,099 9560 6267 124,055 1266 0.9475
4 13,565 7499 3213 64,734 1563 0.9581
5 5183 1880 783 23,604 513 1.0000
6 19,080 8032 3272 95,011 572 0.9766
7 4603 3457 2360 22,112 969 1.0000
8 12,097 6779 6474 52,363 2001 0.8588
9 6587 3341 3581 26,504 1297 0.9477
10 5654 1878 1916 19,277 972 1.0000
11 12,559 8098 3310 41,925 3398 1.0000
12 5728 2481 2254 27,754 982 1.0000
13 4715 1792 2485 31,332 543 1.0000
14 22,793 9874 4145 122,528 1404 1.0000

Step 4: The Shannon entropies for the two models (i.e., q = 2) are calculated as H1 = 0.9877 and
H2 = 0.9866.

Step 5: The degrees of diversification for the two models are D1 = 0.0123 and D2 = 0.0134.
Step 6: With the above values, we can easily calculate the importance degrees as w1 = 0.4794 and

w2 = 0.5206.
Step 7: The composite cross-efficiency scores are then obtained. The results are shown in the second-

to-last column of Table 5.

From the perspective of satisfaction, DMU11 is ranked in the first place, followed by DMU13.
Similarly, from the perspective of consensus, DMU13 is ranked in the first place, followed by
DMU11. We can conclude that the ranking of DMU13 is higher than DMU11 from the compos-
ite perspective. Combining the results of cross-efficiency models from the similarity perspective can
get more practical rankings for decision-makers.

6.2. Further comparisons of the different methods

We compare the rankings of the CCR model, average, satisfaction, consensus, and composite cross-
efficiency scores. Furthermore, we compare the results of neutral methods (Wang and Chin, 2010a),
distance from the average solution method (Fan et al., 2019a), and the variance coefficient method
(Song and Liu, 2018). Song and Liu (2018) improved the idea of Wu et al. (2012) by proposing
a variance coefficient method based on Shannon entropy. Fan et al. (2019a) introduced evalua-
tion based on distance from the average solution method for cross-efficiency aggregation. All the
rankings are listed in Table 6. We can see the rankings of these cross-efficiency models visually in
Fig. 1.
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Table 4
Two different cross-efficiency results

Airline
(DMU) Satisfaction degree

Satisfaction
cross-efficiency

Consensus
degree

Consensus
cross-
efficiency

1 0.9062 (5) 0.8187 (8) 0.7849 (2) 0.7884 (11)
2 0.6703 (14) 0.2339 (14) 0.1945 (14) 0.1866 (14)
3 0.7327 (10) 0.7461 (12) 0.5450 (12) 0.8072 (8)
4 0.7900 (8) 0.8414 (6) 0.7849 (3) 0.8585 (6)
5 0.6808 (11) 0.7976 (10) 0.7905 (1) 0.9223 (3)
6 0.6705 (12) 0.6913 (13) 0.4141 (13) 0.7905 (10)
7 0.9780 (3) 0.9848 (3) 0.7083 (9) 0.8481 (7)
8 0.9589 (4) 0.8345 (7) 0.6573 (10) 0.7487 (13)
9 0.8791 (7) 0.8629 (5) 0.5848 (11) 0.7796 (12)
10 0.6703 (13) 0.7803 (11) 0.7521 (8) 0.8036 (9)
11 1.0000 (1) 1.0000 (1) 0.7849 (3) 0.9419 (2)
12 0.8957 (6) 0.9383 (4) 0.7698 (7) 0.9179 (4)
13 1.0000 (2) 0.9988 (2) 0.7849 (3) 0.9626 (1)
14 0.7535 (9) 0.8096 (9) 0.7849 (3) 0.9049 (5)

Table 5
Normalized and composite cross-efficiency scores

Airline (DMU) N1 N2 EC∗
j Rank

1 0.0722 0.0700 0.8029 9
2 0.0206 0.0166 0.2093 14
3 0.0658 0.0717 0.7779 12
4 0.0742 0.0762 0.8503 7
5 0.0703 0.0819 0.8625 5
6 0.0610 0.0702 0.7429 13
7 0.0869 0.0753 0.9137 4
8 0.0736 0.0665 0.7898 11
9 0.0761 0.0692 0.8195 8
10 0.0688 0.0714 0.7924 10
11 0.0882 0.0836 0.9698 2
12 0.0827 0.0815 0.9277 3
13 0.0882 0.0855 0.9805 1
14 0.0714 0.0804 0.8592 6

Note: N1 represents the normalized scores of satisfaction cross-efficiency; N2 represents the normalized scores of consensus
cross-efficiency.

It can be concluded from Table 6 and Fig. 1 that the CCR model, using self-evaluation, yields an
evaluation result higher than that of the cross-efficiency model. The cross-efficiency score derived
from Fan et al. (2019a) has a good ability to rank DMUs, but the cross-efficiency of DMU2 being
zero makes it too extreme. The rankings of DMU11 and DMU13 are high for all the models, always
appearing in the top three places. In all models, the rank of DMU2 is the lowest. Table 7 shows
the Spearman rank correlation coefficient among different rankings. There are significant high
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Fig. 1. Ranking comparison of different cross-efficiency models.

Table 7
Spearman rank correlation coefficient among different rankings

Models CCR Average

Satisfaction
cross-
efficiency

Consensus
cross-
efficiency

Composite
cross-
efficiency

Wang and
Chin (2010a)

Fan
et al.
(2019a)

Song
and Liu
(2018)

CCR 1.0000
Average 0.8566 1.0000
Satisfaction

cross-efficiency
0.4483 0.6044 1.0000

Consensus
cross-efficiency

0.8238 0.9780 0.5473 1.0000

Composite
cross-efficiency

0.7628 0.8857 0.8549 0.8549 1.0000

Wang and Chin
(2010a)

0.8660 0.9736 0.5648 0.9253 0.8637 1.0000

Fan et al. (2019a) 0.8848 0.9560 0.5824 0.9385 0.8549 0.9121 1.0000
Song and Liu

(2018)
0.8613 0.9560 0.4593 0.9560 0.8022 0.9209 0.9736 1.0000

correlations among the different ranking results (Spearman rank correlation coefficients are mostly
higher than 0.8). Thus, valuable correlation information among different ranking results is rarely
available.

Next, we calculate the synthetic grey incidence degree among the different cross-efficiency scores,
which can be seen as index sequence, derived from different cross-efficiency models. Here, following
the algorithm listed in Section 5.2, we show the calculation of the synthetic grey incidence degree
between the satisfaction and consensus cross-efficiency sequences as an example.

Step 1: Define incidence and construct index sequence. Let Xi represent the satisfaction cross-
efficiency sequence and Xj represent the consensus cross-efficiency sequence. Then, we can get
two sequences with equal time moment intervals as follows:
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Xi = (0.8187, 0.2339, 0.7461, 0.8414, 0.7976, 0.6913, 0.9848,

0.8345, 0.8629, 0.7803, 1.0000, 0.9383, 0.9988, 0.8096),

Xj = (0.7884, 0.1866, 0.8072, 0.8585, 0.9223, 0.7905, 0.8481,

0.7487, 0.7796, 0.8036, 0.9419, 0.9179, 0.9626, 0.9049).

Step 2: Calculate the initial image.

X ′
i = (1.0000, 0.2857, 0.9113, 1.0277, 0.9742, 0.8444, 1.2029,

1.0193, 1.0540, 0.9531, 1.2214, 1.1461, 1.2200, 0.9889),

X ′
j = (1.0000, 0.2367, 1.0238, 1.0889, 1.1698, 1.0027, 1.0757,

0.9496, 0.9888, 1.0193, 1.1947, 1.1643, 1.2210, 1.1478).

Step 3: Calculate the zero-starting point image.

For the absolute incidence degree, we can calculate the zero-starting point image X 0
i and X 0

j as
follows:

X 0
i = (0.0000, −0.5848, −0.0726, 0.0227, −0.0211, −0.1274, 0.1661,

0.0158, 0.0442, −0.0384, 0.1813, 0.1196, 0.1801, −0.0091),

X 0
j = (0.0000, −0.6018, 0.0188, 0.0701, 0.1339, 0.0021, 0.0597,

−0.0397, −0.0088, 0.0152, 0.1535, 0.1295, 0.1742, 0.1165).

For the relative incidence degree, we use step 2 to calculate the zero-starting point image X
′0
i and

X
′0
j as follows:

X
′0
i = (0.0000, −0.7143, −0.0887, 0.0277, −0.0258, −0.1556, 0.2029,

0.0193, 0.0540, −0.0469, 0.2214, 0.1461, 0.2200, −0.0111),

X
′0
j = (0.0000, −0.7633, 0.0238, 0.0889, 0.1698, 0.0027, 0.0757,

−0.0504, −0.0112, 0.0193, 0.1947, 0.1643, 0.2210, 0.1478).

Step 4: Calculate the absolute incidence degree εi j and the relative incidence degree γi j .

We can get |si| = 0.1191, |s j| = 0.1649, |s j − si| = 0.0459, and the absolute incidence degree
εi j = 0.9655. Similarly, we can get |si| = 0.1454, |s j| = 0.2092, |s j − si| = 0.0638, and the relative
incidence degree γi j = 0.9551.

Step 5: Calculate the synthetic grey incidence degree. We get ρi j = θεi j + (1 − θ )γi j = 0.9603. Re-
peating the above steps, we can obtain the grey incidence matrix as shown in Table 8.

It can be concluded from Table 8 that the synthetic grey incidence degree between the satisfaction
cross-efficiency and the consensus cross-efficiency is 0.9603, which is the maximum. Such a high
figure indicates that the two sequences have the highest similarity. Therefore, it is of practical
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Table 8
Grey incidence matrix among different rankings

Models CCR Average

Satisfaction
Cross-
efficiency

Consensus
Cross-
efficiency

Composite
Cross-
efficiency

Wang and
Chin
(2010a)

Fan
et al.
(2019a)

Song and
Liu (2018)

CCR 1.0000 0.8187 0.7588 0.7812 0.7185 0.9340 0.6757 0.8604
Average 1.0000 0.9073 0.9424 0.8438 0.8669 0.6114 0.9413
Satisfaction cross-efficiency 1.0000 0.9603 0.9219 0.7993 0.5914 0.8598
Consensus cross-efficiency 1.0000 0.8884 0.8249 0.5990 0.8906
Composite cross-efficiency 1.0000 0.7528 0.5774 0.8038
Wang and Chin (2010a) 1.0000 0.6505 0.9155
Fan et al. (2019a) 1.0000 0.6256
Song and Liu (2018) 1.0000

significance to combine these two perspectives into a composite ranking method through Shannon
entropy.

The synthetic grey incidence degree between the satisfaction and the composite cross-efficiencies
is 0.9219, while the synthetic grey incidence degree between the consensus and the composite cross-
efficiencies is 0.8884. Therefore, compared with the consensus cross-efficiency, the ranking of satis-
faction cross-efficiency is closer to that of composite cross-efficiency.

From the perspective of average cross-efficiency, the synthetic grey incidence degree between it
and the consensus cross-efficiency is 0.9424, which is the largest. The next largest is 0.9413, which
is the synthetic grey incidence degree between the average and the cross-efficiency of Song and Liu
(2018). The conventional vector similarity method is used to calculate a consensus degree, and the
rationale of the variation coefficient method introduced in Song and Liu (2018) is to assign weights
according to the dispersion degree of the data. Therefore, the two ranking methods were expected
to have a greater similarity to the average cross-efficiency.

The synthetic grey incidence degree between the rankings of Wang and Chin (2010a) and the
CCR model is 0.9340. After that comes 0.9155, which is the synthetic grey incidence degree be-
tween the ranking of Wang and Chin (2010a) and Song and Liu (2018). The similarity between the
ranking of Fan et al. (2019a) and the other models is not very close. To summarize these results,
the cross-efficiency obtained from our composite perspective of satisfaction and consensus-based
on Shannon entropy should be more widely accepted in practical decision-making.

7. Conclusion

Cross-efficiency is an effective and widely adopted method to rank DMUs. This paper proposes a
method to combine the cross-efficiency scores from the perspectives of satisfaction and consensus
degree based on Shannon entropy. The ranking comparison of different cross-efficiency models
with different perspectives is constructed based on the synthetic grey incidence degree.

The main conclusions of this study are as follows. (1) The rankings between satisfaction and con-
sensus cross-efficiencies have the highest similarity. (2) Compared with consensus cross-efficiency,
the ranking of satisfaction cross-efficiency is closer to the composite cross-efficiency result. (3)
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The cross-efficiency results obtained from the composite perspective of satisfaction and consensus
based on Shannon entropy should be more widely accepted in practical decision-making. Our
method represents a practical and significant way to combine the variety of perspectives used in
previous cross-efficiency models, perspectives which lead to different results from which insights
can be gained.

However, there exists some limitations in this paper. For the ranking results of Fan et al. (2019a)
and Song and Liu (2018), we use the benevolent cross-efficiency model to solve the non-uniqueness
problem. Besides, the size of the sample used in the practical example is small relative to the number
of input and output variables, which may affect cross-efficiency results. Cross-efficiency evaluation
in variable returns to scale is also a problem worthy of further study. In the future, we can con-
sider constructing secondary goals from a specific perspective to improve our composite method.
In addition, following the general idea of this study, the combination of DEA and multiple cri-
teria decision-making techniques such as AHP (Analytic Hierarchy Process), TOPSIS (Technique
for Order Performance by Similarity to Ideal Solution), and grey data analysis can be applied in
practice to take advantage of each method’s strengths.
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