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a b s t r a c t

Given the current circumstances of increasingly serious resource consumption and environmental
pollution, the development of China’s green economy will profoundly impact the nation’s future eco-
nomic prosperity and even global economic development. Based on panel data from 2008 to 2017, this
paper measures the green economic efficiency (GEE) of Chinese regions and analyzes its dynamic evo-
lution using time series, based on a novel data envelopment analysis (DEA) model. Using environmental
DEA techniques, this paper introduces the Super-PEBM (EBM based on pearson correlation coefficient)
model, which is developed from the Epsilon based measure (EBM) model, and combines Super-PEBM
with the window analysis method. Firstly, environmental DEA technology is used to analyze GEE at
the regional level in China. Secondly, based on panel data, the window analysis method is used to analyze
the regional differences of China’s regional GEE. Finally, the development trend of China’s regional GEE in
different time windows is obtained by combining the Super-PEBM model and window analysis. The
empirical analysis results using panel data for regions in China from 2008 to 2017 show that: (1) the
overall GEE of China is slowly increasing, and the regional differences are still significant, and (2) the
improvement of GEE can help to reduce regional differences.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

China has made great achievements in the past four decades of
economic reform and opening up, but at the cost of serious envi-
ronmental damage and energy resource shortages (Wang et al.,
2017). At present, China’s economy is maintaining a medium-high
speed of growth, and its GDP has steadily ranked second in the
world. However, environmental pollution in China is serious, and so
economic development and environmental pollution have received
extensive attention in China (Sun et al., 2019). The green economy
refers to the economic form developed for the purpose of harmony
between the economy and environment, and it has gradually
become widely recognized. It has gained momentum in both
academia and policy-making arenas, leading to international pro-
grams in diverse sectors and driving national agendas all over the
world (Loiseau et al., 2016; Merino-Saum et al., 2019). In order to
n (D. Wu), wyh2003@gmail.
better carry out the construction of ecological civilization in the
new era and implement the development concept of harmonious
coexistence between man and nature, China’s economic develop-
ment needs to shift to a growth mode that considers economic
growth, environmental protection, and resource conservation,
namely, green development, so as to realize the goal of building a
beautiful China. As an emerging economic power, China’s green
economy development will have a far-reaching impact on its future
economic prosperity and even global economic development.

According to the 13th five-year plan (2016e2020) of the Chinese
government, the concept of green development should be firmly
established in those five years. To achieve overall improvement in
environmental qualityandtopursuegreendevelopment, Chinamust
adhere to the basic state policy of resource conservation and envi-
ronmental protection and at the same time, follow the path of green
development with an ecological civilization. The pursuit of compre-
hensive, coordinated, and sustainable development of the economy,
society, and theenvironment reflects thebasic requirements of green
development. Pursuing such development is not only the current
phase of China’s economic development but also a requirement for
sustainableeconomicandsocial development. Therefore, it is of great
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Abbreviation

DEA Data envelopment analysis
GEE Green economy efficiency
EBM Epsilon based measure
DMU Decision-making unit
PEBM EBM based on pearson correlation coefficient
CRS Constant return to scale
VRS Variable return to scale
TE Technical efficiency
PTE Pure technical efficiency
SE Scale efficiency
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practical significance to evaluate the energy and environmental ef-
ficiency of Chinese regions.

Green economic efficiency (GEE) is a comprehensive indicator
considering economic growth, resource conservation, and envi-
ronmental protection (Lin and Tan, 2019). Specifically speaking, it
includes two aspects: (1) GEE is an index to evaluate the economic
efficiency of a region, i.e., the utilization efficiency of input factors
in the production process. (2) GEE fully considers resource input
and undesirable output, incorporating the utilization of resources
and environmental costs into the production process. The obtained
efficiency value is the “green” economic efficiency value after
integrating resource utilization and environmental loss value on
the basis of the original economic efficiency. GEE is an important
means to consider the relationship between economic develop-
ment, resource consumption, and environmental pollution. The
improvement of GEE has become an important way to build an
ecological civilization and promote economic transformation in
China (Song et al., 2019).

Green development has become a new mode of world devel-
opment. The traditional method of measuring economic volume
and development prospects by GDP and economic growth rate is no
longer the whole story under the global trend of advocating sus-
tainable development and green development. Considering the
impact of resource constraints and environmental pollution on
economic efficiency, it is urgent to construct a GEE index and dy-
namic analysis method to evaluate the economic growth perfor-
mance correctly. Such a method has important theoretical and
practical significance for promoting the transformation of an eco-
nomic growth mode and realizing sustainable development.

Comparing the frontier formed by the focal decision-making
unit (DMU) and the optimal DMU, efficiency evaluation was first
proposed by Farrell (1957). The developed frontier analysis method
has become a widely used efficiency assessment method in China
and internationally. The most commonly used parametric method
is the stochastic frontier analysis (SFA) model (Aigner et al., 1997),
which describes the production process by estimating production
functions. Nonparametric methods, represented by data envelop-
ment analysis (DEA) (Charnes et al., 1978), are used to evaluate the
relative efficiency of a DMU with multiple inputs and outputs, and
such methods have the advantages of avoiding subjective factors
and simplifying algorithms. DEA has made remarkable progress in
both theoretical development and practical application (Cook and
Seiford, 2009), and is widely used in efficiency evaluation and
ranking. As Sueyoshi et al. (2017) point out, it is of great significance
to apply DEA to environmental evaluation to guide China’s energy
policy, environmental policy, and economic planning.

The types of efficiency evaluation are usually divided into radial
and nonradial methods (Zhou et al., 2008a). The former (such as
CCR (Charnes et al., 1978) and BCC (Banker et al., 1984)) is based on
Debreu-Farrell’s economic theory, while the latter (such as SBM
(Tone, 2001)) is based on Pareto-Koopmans’s economic theory. The
radial method and nonradial methods have their own advantages
and disadvantages (Sueyoshi and Goto, 2012a). The assumptions of
the CCR model are too strict, which means that they can only
provide radial proportional efficiency improvement and can only
evaluate input or output indicators independently. However, the
SBM model can adjust different inputs or outputs in nonequal
proportions. Although SBM avoids the improvement of the same
proportion efficiency, it is at the cost of the original proportion
information of the projected value of the frontier of efficiency.
Therefore, any empirical analysis should integrate the two models
to get an unbiased result. Based on the Hybrid model (Cooper et al.,
2007), the EBM model (Tone and Tsutsui, 2010) integrates radial
and nonradial methods into one structure.

The efficiency value calculated by the traditional DEA model can
only be compared statically among different cross-sections, while
dynamic efficiencyevaluation based onpanel data can calculatemore
efficiency data according to the change during the time series. Win-
dow analysis, first proposed by Charnes and Cooper (1984), is an
improvement on the traditional DEAmethod. The core idea is to treat
each DMU in different periods as a different DMU, and then use the
moving average method to construct different reference sets to
evaluate the relative efficiency of a DMU. Compared with the Malm-
quist index method (Malmquist, 1953), window analysis provides a
higher degree of freedom for the efficiency analysis of DMUs and
improves the reliability of small sample data analysis (Avkiran, 2004).

Although the DEA environmental evaluation method is not
perfect in technical heterogeneity, time lag, statistical inference,
and other aspects, it has broad application prospects in the field of
energy and environment (Sueyoshi et al., 2017). The main contri-
butions of this paper are as follows: (1) Based on the EBM model
(Tone and Tsutsui, 2010) and Super-efficiencymodel (Andersen and
Petersen, 1993), this paper constructs a comprehensive framework
that combines radial and nonradial efficiency evaluation. (2) Based
on the parameter determinationmethod of Tone and Tsutsui (2010)
and the pearson correlation coefficient method, a nonoriented
Super-PEBM (EBM based on pearson correlation coefficient) model
with undesirable output is proposed for the static efficiency eval-
uation of GEE. (3) A dynamic analysis using the window model
based on panel data is constructed on the basis of the Super-PEBM
model, and the new technique is applied to the dynamic evaluation
of the GEE in China from 2008 to 2017.

The structure of the paper is as follows. In Section 2, we review
relevant literature on GEE and methods used in this paper. The
methodology is introduced in Section 3. Section 4 describes the
selection of input-output variables of GEE and the division of
China’s regions. Section 5 discusses the results of GEE analysis and
the dynamic GEE evolution of 30 provinces in China from 2008 to
2017. Finally, conclusions and policy implications are drawn in
Section 6.

2. Literature review

This section summarizes the research background, including
publications on GEE and undesirable outputs. We illustrate the
methods used in this paper from a literature perspective including
the Super-PEBM model and window analysis. The literature
research framework is shown in Fig. 1.

2.1. The literature on GEE

Many scholars have done much empirical research on the



Fig. 1. The literature research framework.
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efficiency of the green economy, green production efficiency, green
innovation efficiency, and green technology efficiency. Yang and Hu
(2010) first proposed the concept of GEE, taking the pollution
output index into account in doing economic efficiency evaluation.
Qian and Liu (2013) developed the definition further and consid-
ered connotations of GEE. Research efforts to date mainly focus on
using different quantitative analysis models to evaluate the GEE. Lu
and Lo (2007) analyzed the economic-environmental performance
for regional levels in China by using cross-efficiency measure. A
non-radial DEA approach was proposed by Zhou et al. (2007) to
measuring environmental performance of OECD countries. While
DEA radial measurement was proposed by Sueyoshi and Goto
(2014) to examine the corporate sustainability of Japanese indus-
trial sectors. In addition, Zhang et al. (2015) proposed a meta-
frontier slack-based efficiency measure approach to model
ecological total-factor energy efficiency. Lo Storto (2016) proposed
a comprehensive index to calculate the ecological efficiency of
cities by combining DEA cross-efficiency model and Shannon’s
entropy. A Super-efficiency, advanced, slack-based model was
proposed by Song and Wang (2018) to test the effectiveness and
growth rate of environment-biased technological progress. He et al.
(2018) presented a comprehensive environmental efficiency index
at the provincial level in China in 2010 based on a slack-based
measure DEA model with nonseparable undesirable output. Sun
and Loh (2019) proposed a bootstrap DEA method to evaluate
sustainability governance performance of 30 provinces based on
ecological efficiency.

Besides, a variety of research objects or scenarios about GEE are
also widely studied by scholars. Zhao et al. (2018) measured land
eco-efficiency of 13 prefecture-level cities in the Beijing-Tianjin-
Hebei region from an economic and ecological perspective. Simi-
larly, the total factor energy efficiency of 27 industries in the Jing-
Jin-Ji region was evaluated by Li et al. (2018) in order to realize
the synergistic optimization management and sustainability
development. An SBM-DEA model was applied by Hu et al. (2019)
to assess the eco-efficiency of wastewater treatment plants of in-
dustrial parks. Recently, Pan et al. (2019) constructs a green pro-
ductivity index based on Global Malmquist-Luenberger
productivity index to evaluate the development of the green
economy in China. Zhu et al. (2020) contributes to establishing a
coordinated economy-environment development mode that aims
at green economy catch-up from the perspective of long-term
convergence of environmental total factor productivity. Super-
efficiency DEA model has been employed by Shuai and Fan
(2020) to measure the efficiency of China’s green economy, and
Tobit model is used to verify the environmental regulation influ-
ence. Song et al. (2020b) developed a directional distance function
model based on the slack-based measure and endogenously
determined directional vector to evaluate the regional green
growth in China. Different from the above research methods, we
considered the improvement of DEA evaluation model, and
analyzed the dynamic evolution of efficiency.

2.2. The study of undesirable outputs

In the study of DEA, the modeling of undesirable outputs has
been formalized in several ways. (1) Some researchers regard the
undesirable outputs as inputs (Reinhard et al., 2000) or free
disposable inputs (Hailu and Veeman, 2001). (2) Some studies treat
undesirable outputs as multiplicative inverse outputs or as large-
constant-added, additive inverse outputs or exponential trans-
formation (Scheel, 2001; Seiford and Zhu, 2002; Sahoo et al., 2011;
Zhou et al., 2019). (3) Other studies use two sub-technologies
generating desirable output and undesirable output separately
(Murty et al., 2012; Sueyoshi and Goto, 2012b). (4) Some techniques
use the materials balance principle to take into account the laws of
thermodynamics (Coelli et al., 2007; Rødseth, 2016; Wang et al.,
2018). (5) It is common to use a DEA model based on the direc-
tional distance function (Chung et al., 1997). (6) Undesirable out-
puts can be treated as weakly disposable outputs (F€are et al., 1989;
F€are and Grosskopf, 2004). Based on the meaning of GEE, the cur-
rent paper considers the environmental DEA technology with weak
disposition assumption about undesirable output, following the
practices of most works in the literature (Zhou et al., 2008b).

2.3. Research on the Super-PEBM model

For the GEE model, this paper selects the Super-EBM model
based on DEA environmental technology. The classical DEA model,
the CCR model, was proposed based on the constant return to scale
(CRS) hypothesis. The BCC model is based on the assumption of
variable return to scale (VRS), thus separating the concepts of scale
efficiency (SE) and technical efficiency (TE). The traditional CCR
model and BCC model, both of which are radial DEA models, have
the defect that only input or output indicators can be evaluated. To
solve this problem, Charnes et al. (1985) proposed an additive
model that can evaluate both input and output indicators, and their
method can be applied using the assumptions of CRS or VRS.

To overcome the problem that the traditional DEA model uses
only radial projection, Pastor et al. (1999) proposed the enhanced
Russell measure (ERM) model based on the Russell measure.
Aiming to overcome the problem that traditional DEA models can
only distinguish inefficient DMUs and cannot distinguish between
the efficient ones, Andersen and Petersen (1993) put forward the
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Super-efficiency model. Considering that the additive model and
ERM model often have unreasonable calculation results due to the
inconsistency of variable dimensions, Tone (2001) put forward the
SBM model which can solve the problem of different variable di-
mensions. Different from the traditional CCR or BCC models, SBM
directly adds the slack vector into the objective function, so that the
economic interpretation of the SBM model is to maximize the
actual profit rather than just the benefit ratio.

As noted above, both radial and nonradial models have advan-
tages and disadvantages in terms of the ratio of input or output
variation. Tone and Tsutsui (2010) proposed the EBMmodel, which
is a compromise between radial and nonradial models, integrating
them into a unified framework. A review of the literature reveals
that few studies use EBMmodel to calculate GEE. At the same time,
there is little literature on combining DEA environmental tech-
nology with the research of GEE. Therefore, on the basis of EBM
model, the current paper unifies the Super-efficiency model and
DEA environmental technology, putting forward a Super-EBM
model that incorporates undesirable output. As for the parame-
ters in the Super-EBM model, the paper uses the pearson correla-
tion coefficient to determine the parameters and uses those
parameters to construct the specific Super-PEBM model.
2.4. Studies on window analysis

Both the traditional DEA model and the Super-EBM model can
carry out static analysis on sectional data, but neither can carry out
dynamic analysis on the efficiency of DMUs in different periods.
Since the frontier of each DMU is different each year, the efficiency
value calculated by using the Super-PEBMmodel is not comparable
in a time series. Many studies have used the Malmquist index to
analyze panel data, but Oh and Heshmati (2009) pointed out that
this method does not properly reflect the characteristics of tech-
nological progress, and the efficiency growth index obtained might
be biased. In addition, desirable and undesirable outputs have
different technical structures, including technical heterogeneity.
The dynamic analysis of GEE using the Malmquist index fails to
consider spatial changes and cannot accurately explain the spatial-
temporal pattern evolution of GEE; this technique fails to describe
GEE’s time characteristics and spatial differences. As a result,
window analysis is considered a more suitable method for panel
data analysis, and scholars have conducted dynamic evaluations of
energy and environmental efficiency and industrial ecological ef-
ficiency based on window analysis (Halkos and Tzeremes, 2009;
Zhang et al., 2011; Yang et al., 2018a,b; Zhu et al., 2019).

Using the window analysis framework, the efficiency of a DMU
in one period can be comparedwith its efficiency in another period,
and the efficiency of the other DMUs can also be compared, so as to
reflect the heterogeneity between DMUs through a series of over-
lapping windows (Wang et al., 2013; Zhang et al., 2011). Window
analysis can reflect the continuity of input and output in time,
describing the dynamic evolution of the DMU. At the same time,
window analysis can also compare the efficiency of DMUs under
different windows in the same period and analyze the stability of
the efficiency. Window analysis has two significant advantages: (1)
It can multiply the number of DMUs in the reference set, which is
an effective way to solve the problem of having an insufficient
number of DMUs. (2) We can not only measure the efficiency of
each DMU on a cross section but also measure the trend of the
efficiency of all DMUs over the time series. To compare the relative
efficiency of the same DMU in different periods, the current paper
uses a dynamic Super-PEBM window analysis model with unde-
sirable output to study the GEE.
3. Methodology

This section introduces the research method of this paper and
constructs the model. Firstly, a Super-EBM model environmental
DEA technology is constructed. Secondly, the parameters of the
Super-PEBM model are determined based on pearson correlation
coefficient adjustment (Cheng, 2014). Finally, the Super-PEBM
model is combined with the window analysis method to explore
the dynamic evolution of GEE in China.
3.1. Super-EBM model based on environmental DEA technology

The EBM model, a hybrid model including radial and SBM dis-
tance functions proposed by Tone and Tsutsui (2010), is named for
the parameters ε used in themodel. Each DMU can be considered as
a production system that consumes multiple inputs and produces
multiple outputs, so the production system can be modeled within
the joint production framework of desirable and undesirable out-
puts. Suppose there are J decision making units, and each
DMUjðj¼ 1;…; JÞ uses inputs Xpjðp¼ 1;…; PÞ to produce desirable
outputs Yqjðq¼ 1;…;QÞ and undesirable outputs Rmjðm ¼ 1;…;MÞ.
Assuming the weak disposability (F€are et al., 1989) and “null-
jointness” (Shephard and F€are, 1974) of the undesirable outputs,
F€are and Grosskopf (2004) proposed an environmental DEA tech-
nology using the CRS assumption. Their environmental production
possibility set (PPS) can be expressed as

PPSCRS ¼

8>>>><
>>>>:

ðX; Y ;RÞ :
XJ

j¼1

ljXpj � Xp;p ¼ 1; :::; P;

XJ

j¼1

Yqjlj � Yq; q ¼ 1; :::;Q ;

PJ
j¼1

ljRmj ¼ Rm;m ¼ 1; :::;M; lj � 0;cj

9>>>>>=
>>>>>;

(1)

According to the research of Chen (2013), environmental DEA
technology under the VRS assumption does not simply add the

constraint
PJ

j¼1lj ¼ 1 to Eq. (1). Rather, we need a convex and

completely linearized model, i.e., Eq. (2), as put forward by
Kuosmanen (2005).

PPSVRS ¼

8>>>><
>>>>:

ðX; Y ;RÞ :
XJ

j¼1

�
lj þ mj

�
Xpj � Xp; p ¼ 1; :::; P;

PJ
j¼1

ljYqj � Yq; q ¼ 1; :::;Q ;

XJ

j¼1

ljRmj ¼ Rm;m ¼ 1; :::;M;

PJ
j¼1

�
lj þ mj

� ¼ 1; lj;mj � 0;cj

9>>>>>=
>>>>>;

(2)

It is often assumed that PPS satisfies the standard axioms of the
production theory (F€are and Grosskopf, 2003): (1) inactivity is al-
ways possible, i.e., ð0;0;0Þ2PPS; (2) finite amounts of inputs can
produce only finite amounts of outputs; (3) PPS is convex; and (4)
inputs and desirable outputs are often assumed to be strongly or
freely disposable. After defining the environmental DEA technol-
ogy, the fractional programming form of the nondirected Super-
EBM model that evaluates DMUk with undesirable output is as
follows. It should be noted that Model (3) is based on VRS
assumption as shown in Eq. (2).
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g ¼ min

q� ε
� 1XP

p¼1
w�

p

XP
p¼1

w�
p s

�
p

Xpk

fþ ε
þ
0
@ 1XQ

q¼1
wþ

q

XQ

q¼1

wþ
q s

þ
q

Yqk
þ 1XM

m¼1
w�

m

XM
m¼1

w�
ms

�
m

Rmk

1
A

subject to

XJ

j¼1;ksj

�
lj þ mj

�
Xpj þ s�p ¼ qXpk p ¼ 1; :::; P

XJ

j¼1;ksj

ljYqj � sþq ¼ fYqk q ¼ 1; :::;Q

XJ

j¼1;ksj

ljRmj þ s�m ¼ fRmk m ¼ 1; :::;M

XJ

j¼1

�
lj þ mj

� ¼ 1; q � 1;f � 1

lj � 0; mj � 0; j ¼ 1;2; :::; JðksjÞ

s�p � 0; sþq � 0; s�m � 0

Xpks0; Yqks0; Rmks0

(3)

Here, the lj and mj are referred to as intensity variables used for
connecting the input and output vectors by a convex combination.
Also, w�

p , w
þ
q , and w�

m respectively represent the weights (relative
importance) of inputs, desirable outputs, and undesirable outputs,

and satisfy
PP

p¼1w
�
p ¼ 1,

PQ
q¼1w

þ
q ¼ 1, and

PM
m¼1w

�
m ¼ 1(w�

p � 0;

wþ
q � 0; w�

m � 0; cp; q; m). Parameters s�p ,sþq , ands�mrespectively
represent the slack of inputs, desirable outputs, and undesirable

outputs, while
w�

p s
�
p

Xpk
,

wþ
q s

þ
q

Yqk
, and w�

ms
�
m

Rmk
respectively represent the

weighted average slack of inputs, desirable outputs, and undesir-

able outputs, where
s�p
Xpk

,
sþq
Yqk

, and s�m
Rmk

are unit invariant. In the model,

s�p , sþq , and s�m are nonradial slacks, while ε
�and ε

þ are key pa-
rameters representing the importance degree of the nonradial part
in the calculation of efficiency value. ε

� indicates the relative
importance of the nonradial slacks over the radial q, and ε

þ in-
dicates the relative importance of the nonradial slacks over the
radial f. When ε is 0, Model (3) corresponds to the radial model,
and when ε is 1, it corresponds to the SBM model. In this paper,
constraints q � 1; f � 1 are added in order to resolve logic errors
that occur with the EBM model’s projections (Tone and Tsutsui,
2010; Cheng, 2014). If and only if g � 1, DMUk is valid for the
Super-EBM model.
3.2. Pearson correlation coefficient adjustment

Two parameters, ε andw, need to be determined before the EBM
model is established. Taking input indicators a and b as examples
and combining the treatment methods of Cheng (2014) and Tone
and Tsutsui (2010), our method is divided into the following four
steps.
Step 1 Projection values of each input are obtained through the
SBM model, and denoted as Pa and Pb. The correlation be-
tween the projection values of the two indicators represents
the proportional relationship between the quantities of the
two inputs in the production technology, and thus the
substitutability of the indicators in the production process
can be concluded. A high degree of linear positive correla-
tion indicates that the substitutability is not good, and so,
radial measurement should be the main method. In this
case, ε should be a small number approaching or equal to 0.
If a high degree of linear negative correlation is present,
then strong substitutability and nonradial measurement
should be adopted, so ε should be a value approaching or
equal to 1.

Step 2 Establish the correlation matrix of the projection values of
the input indices. Each element of the matrix is the corre-
lation index between the projection value of two input
indices. Let S be the function of the correlation index be-
tween projection values Pa and Pb, which should conform to
the rules proposed by Tone and Tsutsui (2010).

(R1) Identical, i.e., Sða;aÞ ¼ 1;
(R2) Symmetric, i.e., Sða;bÞ ¼ Sðb;aÞ;
(R3) Unit-invariant, i.e., Sðta;bÞ ¼ Sðb;aÞ ðt >0Þ;
(R4) Numerical range, i.e., 0 � Sða;bÞ � 1.

Step 3 Due to the known defects of the method of calculating the
correlation index, the method we use is different from the
method of using the discrete exponential function. In this
paper, pearson correlation coefficient represents the simi-
larity of the two indicators, which is adopted to satisfy the
above properties through Sða; bÞ ¼ 0:5þ 0:5Rða; bÞ trans-
formation. See Eq. (4) for details.

Rða; bÞ ¼
PP

p¼1
�
aj � a

��
bj � b

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP

p¼1
�
aj � a

�2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1

�
bj � b

�2q (4)
Step 4 The parameters of the EBM model are calculated by using
the established correlation exponential matrix using Eq. (5)
and Eq. (6).

ε ¼ P �maxðrÞ
P � 1

(5)

w�
p ¼ vPP

p¼1v
(6)

where r is the eigenvector of the largest eigenroot of the associated
exponential matrix, and v is its corresponding eigenvector.

3.3. A Super-PEBM window analysis method

Suppose that the window starts at time t ð1� t� TÞ, and the
window length is d ð1� d� T �1Þ so each window has d� J DMUs.
Using td ð1� d� T �dþ1Þ to represent the index of each window,
the input matrix of window td is.

Xtd ¼ ðXt
1;X

t
2; :::;X

t
J ;X

tþ1
1 ;Xtþ1

2 ; :::;Xtþ1
J ; :::;Xtþd

1 ;Xtþd
2 ; :::;Xtþd

J Þ; and
the desirable and undesirable output matrices are

Ytd ¼ ðYt
1;Y

t
2; :::;Y

t
J ;Y

tþ1
1 ;Ytþ1

2 ; :::;Ytþ1
J ; :::;Ytþd

1 ;Ytþd
2 ; :::; Ytþd

J Þ and

Rtd ¼ ðRt1;Rt2; :::;RtJ ;Rtþ1
1 ;Rtþ1

2 ; :::;Rtþ1
J ; :::;Rtþd

1 ;Rtþd
2 ; :::;Rtþd

J Þ.
If the total length of time is T, then T � dþ 1 windows will be

established for the efficiency measurement of each DMU. Each
DMU obtains d efficiency values in total for the a-th window, a ¼
1;2; :::; T � dþ 1. Using the moving average method, d efficiency



Table 1
Window analysis of each DMU in period T.

t ¼ 1 t ¼ 2 t ¼ 3 t ¼ 4 ::: t ¼ T-3 t ¼ T-2 t ¼ T-1 t ¼ T

Window 1 E11 E12 E13
Window 2 E21 E22 E23
...
Window T-d ET-d,1 ET-d,2 ET-d,3
Window T-dþ1 ET-dþ1,1 ET-dþ1,2 ET-dþ1,3
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values in total from window t to window T � dþ 1 are measured
successively from the first time point t ¼ 1 ðt ¼ 1;2; :::; TÞ. The
average efficiency value at each time point is taken as the final
efficiency value for the time series comparison of the evaluated
DMU. For each DMU, a total of ðT �dþ1Þ � d efficiency values need
to be determined. The process of window analysis is shown in
Table 1.

Considering the undesirable output, for any evaluated DMUk,
the Super-PEBM model to calculate the GEE at time point
bðb¼ 1;2; :::;dÞ inwindow a ða¼ 1;2; :::; T �dþ1Þ can be expressed
as Model (7).
Eab ¼ min

qab � ε
� 1XP

p¼1
w�

p

XP
p¼1

w�
p s

�;ab
p

Xpk

fab þ ε
þ
0
@ 1XQ

q¼1
wþ

q

XQ

q¼1

wþ
q s

þ;ab
q

Yqk
þ 1XM

m¼1
w�

m

XM
m¼1

w�
ms

�;ab
m

Rmk

1
A

subject to

Xd�J

j¼1;ksj

�
labj þ mabj

�
Xab
pj þ s�;ab

p ¼ qabXab
pk p ¼ 1; :::; P

Xd�J

j¼1;ksj

labj Yab
qj � sþ;ab

q ¼ fabYab
qk q ¼ 1; :::;Q

Xd�J

j¼1;ksj

labj Rabmj þ s�;ab
m ¼ fabRabmk m ¼ 1; :::;M

XJ

j¼1

�
labj þ mabj

�
¼ 1; qab � 1; fab � 1

labj � 0; mabj � 0; j ¼ 1;2; :::;d� JðksjÞ

a ¼ 1;2; :::; T � dþ 1; b ¼ 1;2; :::;d

s�;ab
p � 0; sþ;ab

q � 0; s�;ab
m � 0; Xab

pks0; Yab
qks0; Rabmks0

(7)
The meanings of the variables here are basically the same as
those in Model (3), except that superscript (or subscript) ab in-
dicates that this variable is a variable at the n-th time point in the

m-th window. Letðqab*;fab*;lab*j ;s�;ab*
p ;sþ;ab*

q ;s�;ab*
m Þbe the optimal

solution of Model (7). When Eab � 1, and all the slack variables
s�;ab*
p ¼ 0; sþ;ab*

q ¼ 0; s�;ab*
m ¼ 0, then the evaluated DMU is

efficient.
Previous papers (Avkiran, 2004; Charnes et al., 2013) tell us how

to select thewindowwidth so that the best balance can be achieved
in terms of reliability and stability of efficiency measures. We select
thewindowwidth d ¼ 3 since small windowwidths can reduce the
impact of model defects. In the example used in this paper, the
sample length is 10, and 8 windows need to be established for each
DMU for efficiency evaluation.
4. Variable selection and division of Chinese regions

4.1. Variable selection

On the basis of its economy, each province is regarded as a
comprehensive system of resources, economy, and environment;
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each is a DMU that converts input into output under certain tech-
nical conditions. GEE is a multi-factor integration process. In this
paper, we take 30 provinces of China as DMUs and study the time
span from 2008 to 2017. Tibet, Taiwan, Hong Kong, andMacau were
excluded because of a lack of data. The selection of input variables,
output variables, and data sources are described below.

As was done in previous studies (Pan et al., 2019; Shuai and Fan,
2020), energy, labor, and capital stock are selected as input in-
dicators. (1) Energy input. Total energy consumption represents
energy input, converted into units representing one million tons of
standard coal. The data are collected based on the China Energy
Statistical Yearbooks 2009e2018 (CNSY, 2009e2018). (2) Labor
force. Employment data are used to represent labor input. Due to
the difficulty in obtaining statistics about labor remuneration, labor
hours, labor intensity, and other data, we select the number of la-
borers in each region, that is, the number of employees at the end of
the year, as the labor input index. Labor force data are from the
China Statistical Yearbooks from 2009 to 2018 (CSY, 2009e2018).
(3) Capital investment. Based on the previous research results, we
take the capital stock as the index to measure the capital input.
Capital stock data from provinces are not directly available in offi-
cial statistics, but macroeconomic analysis is always tied to capital
stock. Therefore, referring to the study of Hu and Kao (2007), we
adopt the perpetual inventory method for estimation. The esti-
mation formula is expressed as Eq. (8) and Eq. (9).

Pt ¼Ut � Pt�1 (8)

Kt ¼ It=Pt þ ð1� dÞKt�1 (9)

where Kt , d, Pt , Ut , and It represent the capital stock of the t-th
period, depreciation rate, deflator index of the t-th period, fixed
asset investment price index of the t-th period, and total fixed
capital formation of the t-th period, respectively. The data for Ut

and It came from CSMAR and d ¼ 9:6%. We follow the method of
Zhang et al. (2004) and convert capital stock using constant price in
2008.

For the final output of GEE, we divide the output indicators into
desirable outputs and undesirable outputs, namely economic
output and environmental factors (Yang et al., 2018a,b). (1) Desir-
able output. Economic output is expressed by the regional GDP of
each province, and the quarter-on-quarter GDP index of each
province from 2008 to 2017 was obtained from the China economic
database (CEIC). We convert the quarter-on-quarter index to the
fixed-basis GDP index based on 2008 and convert the regional GDP
into the constant price in 2008 based on the quarter-on-quarter
Fig. 2. Input-output pr
index. (2) Undesirable output. As in the study of Shuai and Fan
(2020), industrial wastewater, industrial SO2, and industrial soot
are used as undesirable outputs in the current paper. The data of
desirable outputs and undesirable outputs are gathered from the
China Statistical Yearbooks (CSY, 2009-2018) and the China Envi-
ronmental Statistical Yearbooks (CESY, 2009e2018) from 2009 to
2018. Fig. 2 shows the input-output production system. In this
production system, the proposed approach will increase desirable
outputs (GDP) while reducing undesirable outputs (industrial
wastewater, SO2, and dust) and inputs (energy, labor force, and
capital stock) in the meantime so as to increase efficiency. The
descriptive statistical characteristics of input-output variables are
shown in Table 2. Energy is important natural resource in the
production system of provinces. Labor combines and converts
capital and resource into economic outputs, while pollution emis-
sion reflects negative impacts on the environment. The selection of
indicators is representative in order to avoid indicator redundancy.
The pearson correlation coefficient of input (output) indicators
indicates that there is no highly correlation between input (output)
indicators on the whole.
4.2. Division of Chinese regions

Most of the previous studies divide Chinese regions into the
eastern, central, and western areas on account of the geographical
location. However, with a view to the vast geographic coverage of
China, the above divided areas are too large to distinguish accu-
rately. Also, the internal diversity of the three regions has become
greater along with China’s development (Zhang et al., 2018). Be-
sides, referring to the Analysis of the Characteristic of Chinese
Regional Social and Economic Development (Development
Research Center of the State Council, 2002), we reject the previ-
ously common rough regional division of eastern, central, and
western areas, and use a scheme with six areas. Thus, our com-
parison between areas is more in line with the requirements of
today’s economic development so our results become more real-
istic. To study the gaps in China’s regional GEE, Chinese adminis-
trative regions are divided into six areas: the northeastern area, the
northern coastal area, the southeastern coastal area, the middle
reaches area of the Yellow River, the middle reaches area of the
Yangtze River, and the western area, as shown in Fig. 3. The
geographical distribution of the six areas is sown on this map of
China obtained from http://bzdt.ch.mnr.gov.cn/.

The northeastern area includes three provinces, where eco-
nomic development is advanced and the heavy industry is devel-
oped. In recent years, these provinces are facing problems such as
oduction system.

http://bzdt.ch.mnr.gov.cn/


Table 2
Descriptive statistical characteristics of input-output variables from 2008 to 2017.

Variables Units Minimum Maximum Mean Standard Deviation

Input variables Energy consumption Million TCE 11.35 395.82 139.41 83.96
Employed population Thousand people 5543.00 111690.00 44954.70 26925.68
Capital stock Billion RMB 297.08 22004.06 5271.44 4107.02

Output variables GDP Billion RMB 39.59 7647.28 1753.79 1489.04
Industrial wastewater Ten million tons 0.74 938.26 186.69 172.68
Industrial SO2 Thousand tons 14.30 1827.40 630.26 407.20
Industrial dust Thousand tons 8.00 1797.70 381.60 294.90

Note: TCE indicates Tonnes of Coal Equivalent.

Fig. 3. Geographical distribution of six areas in China.

Table 3
The specific division of six areas in China.

Areas Provinces, Autonomous Regions, and Municipalities

Northeastern area Liaoning, Jilin, Heilongjiang
Northern coastal area Beijing, Tianjin, Hebei, Shandong
Southeastern coastal area Shanghai, Jiangsu, Zhejiang, Fujian, Guangdong, Hainan
Middle reaches area of the Yellow River Shaanxi, Shanxi, Henan, Inner Mongolia
Middle reaches area of the Yangtze River Hubei, Hunan, Jiangxi, Anhui
Western area Chongqing, Guangxi, Yunnan, Guizhou, Sichuan, Gansu, Qinghai, Xinjiang, Ningxia

Note: In this study, 30 municipalities, autonomous regions, and provinces of China are clustered into six areas. Tibet, Taiwan, Hong Kong, and Macau are
excluded for lack of data.

Table 4
Comparisons of average GEE from 2008 to 2017 in China based on different models.

Model 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

CCR 0.66 0.66 0.69 0.79 0.79 0.68 0.66 0.68 0.68 0.68
BCC 0.74 0.73 0.78 0.85 0.85 0.78 0.78 0.78 0.78 0.78
SBM 0.43 0.44 0.44 0.50 0.50 0.49 0.48 0.48 0.49 0.47
EBM 0.57 0.56 0.55 0.68 0.68 0.60 0.61 0.63 0.63 0.63
PEBM 0.64 0.65 0.68 0.77 0.77 0.67 0.67 0.67 0.67 0.66

Table 5
Correlation and difference comparison of efficiencies by different models.

Comparison Pearson correlations t-test (t value) Mean difference

SBM versus EBM 0.872*** �17.762*** 0.071
SBM versus PEBM 0.663*** �18.997*** 0.106
EBM versus PEBM 0.785*** �7.527*** 0.043

Note: ***Indicates that correlations are statistically significant at 1% level (2-tailed).
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Table 6
Average GEE and its decompositions from 2008 to 2017 in China.

Efficiency 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

PTE 0.66 0.66 0.69 0.79 0.79 0.68 0.68 0.68 0.68 0.68
TE 0.74 0.73 0.78 0.85 0.85 0.78 0.78 0.78 0.78 0.78
SE 1.12 1.11 1.13 1.08 1.08 1.15 1.15 1.14 1.14 1.14
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resource depletion and the need for industrial structure upgrading.
The northern coastal area includes two municipalities and two
provinces, which have advanced scientific, educational, and cul-
tural undertakings and convenient transportation. The south-
eastern coastal area includes one municipality and five provinces.
These areas have received a large amount of foreign investment and
preferential policies due to their advantageous geographical loca-
tion, and they have a high level of openness and economic devel-
opment. The middle reaches area of the Yellow River includes an
autonomous region and three provinces. This area is inland and rich
in natural resources, especially coal and natural gas. The members
of this area are all facing the need for industrial upgrading and
adjustment. The middle reaches area of the Yangtze River includes
four provinces, which are densely populated and have good agri-
cultural conditions. The western area includes three autonomous
regions, one municipality, and five provinces, which are rich in
mineral resources, backward in production technology, and rela-
tively low in economic development. The detailed division of the
areas is shown in Table 3.
5. Empirical analysis and results

5.1. Comparisons between Super-PEBM model and other models

5.1.1. Comparisons with other models
To illustrate the relative advantages of the EBM model, Table 4

compares the evaluation results of the EBM model with those us-
ing the CCR and SBM models. The EBM model not only considers
the radial ratio between the target and the actual production inputs
but also considers the nonradial slacks. In this way, the combina-
tion of CCR model and SBM model can overcome each model’s
shortcomings to some extent, and the efficiency of the model is
evaluated scientifically. Table 4 shows that the efficiency of the BCC
Fig. 4. GEE changes from 2008 to 2017 in China based on the traditional model.
model is higher than that of the CCR model, both of which use
radial distances. The SBM model uses the longest distance to the
strong effective frontier, and its efficiency is lower than that of both
CCR and BCC models. The EBM model combines radial ratio and
nonradial slacks, so its efficiency values are between those of the
CCRmodel and SBMmodel. The efficiency value of the PEBMmodel
is slightly higher than that of the EBM model but remains between
the values for the CCR model and the SBM model. As shown in
Table 5, through the paired sample t-test, the mean difference be-
tween SBM, EBM and PEBM is close to 0. According to Pearson
correlations, there are significant high correlations between SBM,
EBM and PEBMmodels. That is, the trend of the results evaluated by
the three models is consistent.

For the traditional models (i.e., CCRmodel and BCCmodel), scale
efficiency can be analyzed. Table 6 describes the efficiency and
decomposition of the radial model. As analyzed above, the effi-
ciency of the BCC model is greater than that of CCR model in each
year. This is expected because the CCR model is based on the CRS
hypothesis, whereas the BCC model is based on the VRS hypothesis.
In decomposing the BCC model, the efficiency of the BCC model is
called comprehensive technical efficiency (TE), the efficiency of CCR
model is called pure technical efficiency (PTE), and the ratio is scale
efficiency (SE), i.e., TE ¼ PTE� SE.

Fig. 4 gives a more intuitive explanation, reflecting the dynamic
changes in Table 6. By comparison, it is found that TE and PTE
determined using the Super-efficiency model are higher thanwhen
using the traditional model, and SE generally declines first and then
rises. Next, we will explain the advantages of the Super-efficiency
model.
5.1.2. The advantages of the super-efficiency model
Table 7 shows the efficiency values of Chinese provinces ob-

tained by different models in 2017. Considering the regional
average GEE calculated by the provincial data in 2017, the results
between the different models are consistent with the conclusions
given in Table 4. Through the comparison of various models, it can
be concluded that the efficiency of Beijing, Tianjin, and Shanghai in
2017 in each year was equal to 1, so those DMUs cannot be fully
ordered. Similarly, there are five different models in which the ef-
ficiency of more than one DMU is 1, so those DMUs cannot be fully
sorted. Based on this problem, it is necessary to introduce the
Super-efficiency model. Table 7 lists the results of five models
without Super-efficiency, and it can be seen that the average GEE in
2017 is between 0.4 and 0.7. The following analysis in the paper will
be based on the Super-efficiency model and will indicate that the
efficiency calculated in Table 7 is an underestimate of the average
GEE, which can be used as a comparison to reflect the advantages of
the Super-efficiency model.
5.2. The change characteristics of GEE under different
circumstances

5.2.1. Cases with and without undesirable outputs
Table 8 describes the GEE in China from 2008 to 2017 with the

Super-PEBM model including and excluding undesirable output.
Fig. 5 intuitively describes the dynamic changes of the GEE in China



Table 7
Regional GEE in China obtained by different models in 2017.

Areas Provinces CCR BCC SBM EBM PEBM

Northeastern area Liaoning 0.62 0.73 0.39 0.60 0.61
Jilin 0.69 0.69 0.39 0.60 0.65
Heilongjiang 0.63 0.68 0.39 0.61 0.61
Average 0.65 0.70 0.39 0.60 0.63

Northern coastal area Beijing 1.00 1.00 1.00 1.00 1.00
Tianjin 1.00 1.00 1.00 1.00 1.00
Hebei 0.62 0.85 0.37 0.59 0.61
Shandong 0.80 1.00 0.51 0.73 0.79
Average 0.86 0.96 0.72 0.83 0.85

Southeastern coastal area Shanghai 1.00 1.00 1.00 1.00 1.00
Jiangsu 0.88 1.00 0.59 0.75 0.80
Zhejiang 0.88 0.96 0.58 0.77 0.83
Fujian 0.78 0.84 0.51 0.69 0.74
Guangdong 0.97 1.00 0.62 0.80 0.88
Hainan 0.60 1.00 0.34 0.52 0.57
Average 0.85 0.97 0.61 0.75 0.80

Middle reaches area of the Yellow River Shannxi 0.03 0.13 0.02 0.03 0.03
Shanxi 0.48 0.52 0.27 0.45 0.47
Henan 0.64 0.83 0.39 0.57 0.63
Inner Mongolia 0.63 0.93 0.40 0.58 0.61
Average 0.44 0.60 0.27 0.41 0.43

Middle reaches area of the Yangtze River Hubei 0.66 0.75 0.40 0.61 0.66
Hunan 0.68 0.73 0.39 0.60 0.66
Jiangxi 0.72 0.72 0.39 0.62 0.68
Anhui 0.71 0.74 0.39 0.62 0.69
Average 0.69 0.73 0.39 0.61 0.67

Western area Chongqing 0.69 0.72 0.40 0.61 0.66
Guangxi 0.63 0.63 0.35 0.55 0.60
Yunnan 0.50 0.50 0.28 0.45 0.48
Guizhou 0.42 0.45 0.25 0.40 0.42
Sichuan 0.72 0.78 0.39 0.63 0.70
Gansu 1.00 1.00 1.00 1.00 1.00
Qinghai 1.00 1.00 1.00 1.00 1.00
Xinjiang 0.11 0.20 0.05 0.10 0.11
Ningxia 0.27 0.88 0.15 0.26 0.27
Average 0.59 0.69 0.43 0.56 0.58

Table 8
Comparison of the undesirable output in the Super-PEBM model.

Model 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Super-PEBM-C 0.87 0.87 0.82 0.84 0.84 0.93 0.92 0.91 0.90 0.90
Super-PEBM-U-C 0.64 0.65 0.68 0.77 0.77 0.67 0.67 0.67 0.67 0.66
Super-PEBM-V 0.93 0.94 0.92 0.92 0.92 0.97 0.98 0.95 0.93 0.94
Super-PEBM-U-V 0.74 0.73 0.79 0.86 0.86 0.78 0.78 0.78 0.78 0.77

Note: The symbol “C” and “V” represent CRS and VRS hypothesis, respectively. The symbol “U” means that undesirable output is considered.
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from 2008 to 2017 (Table 8). The results show that the efficiency of
the model containing undesirable output is lower than that of the
model without undesirable output, which indicates that environ-
mental factors cause a large degree of efficiency loss; this shows
that efficiency evaluation without considering environmental fac-
tors is unrealistic. It can also be found that the efficiency under the
VRS hypothesis is higher than that of the CRS hypothesis, which
indicates that most scholars’ research based on the CRS hypothesis
is also inconsistent with reality. The current study will further
explain the large regional gap of the GEE in China, showing that the
VRS hypothesis is more suitable for China’s reality. Under the
Super-PEBM model with undesirable output, the GEE in China
presents an inverted U-shaped change trend, which will be
analyzed in detail later.

5.2.2. Comparison of cases with CRS and VRS hypothesis
Table 9 describes the GEE in Chinese provinces, assuming the

CRS and VRS hypothesis respectively in 2017, including three types
of Super-efficiency model considering undesirable output. The
average efficiency of the Super-SBM, Super-EBM, and Super-PEBM
models in the CRS hypothesis is 0.49,0.63 and 0.66 respectively.
Under the hypothesis of VRS, the average efficiency of Super-SBM,
Super-EBM and Super-PEBM models is 0.62,0.74, and 0.77, respec-
tively. It can be seen that the GEE measure using the Super-SBM
model is lower than that using the Super-EBM and Super-PEBM
models. As mentioned above, the EBM model combines the ad-
vantages of radial proportion improvement and nonradial slack
improvement. According to the results of Table 9, Beijing, Tianjin,
Shanghai, Gansu, and Qinghai have efficient GEE under both CRS
and VRS hypothesis in 2017. By comparing the GEE of the three
models in terms of CRS and VRS, it can be seen that the GEE results
under the VRS hypothesis results are always higher than those
under the CRS hypothesis. Considering the differences between
provinces and areas in China, the evaluation of GEE under VRS will
be more practical, which indicates a deficiency of many previous
studies.

Fig. 6 and Fig. 7 show the GEE of Chinese provinces under
different models in 2017, fromwhich it can be found that the Super-
SBM results fluctuate greatly. The efficiency values of efficient
DMUs will be higher, and the efficiency values of inefficient DMUs



Fig. 5. Dynamic change of GEE under the Super-PEBM model.
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will be lower. Under the VRS hypothesis, the error fluctuation will
be larger. However, the efficiency values calculated by the Super-
PEBM model are relatively stable using either hypothesis, so the
GEE results in Chinese provinces are more practical when we use
Super-PEBM. Fig. 8 shows the comparison of using the CRS or VRS
hypothesis for the Super-PEBMmodel, which further indicates that
it is practical to use the Super-PEBM model to calculate the GEE at
the provincial level in China assuming the VRS hypothesis.
Table 9
The efficiency values of the three models under CRS and VRS hypotheses in 2017.

Provinces CRS

Super-SBM Super-EBM Super-P

Beijing 1.12 1.05 1.04
Tianjin 1.03 1.01 1.01
Hebei 0.37 0.59 0.61
Shanxi 0.27 0.45 0.47
Inner Mongolia 0.40 0.58 0.61
Liaoning 0.39 0.60 0.61
Jilin 0.39 0.60 0.65
Heilongjiang 0.39 0.61 0.61
Shanghai 1.08 1.03 1.02
Jiangsu 0.59 0.75 0.80
Zhejiang 0.58 0.77 0.83
Anhui 0.39 0.62 0.69
Fujian 0.51 0.69 0.74
Jiangxi 0.39 0.62 0.68
Shandong 0.51 0.73 0.79
Henan 0.39 0.57 0.63
Hubei 0.40 0.61 0.66
Hunan 0.39 0.60 0.66
Guangdong 0.62 0.80 0.88
Guangxi 0.35 0.55 0.60
Hainan 0.34 0.52 0.57
Chongqing 0.40 0.61 0.66
Sichuan 0.39 0.63 0.70
Guizhou 0.25 0.40 0.42
Yunnan 0.28 0.45 0.48
Shaanxi 0.02 0.03 0.03
Gansu 1.08 1.03 1.00
Qinghai 1.08 1.03 1.00
Ningxia 0.15 0.26 0.27
Xinjiang 0.05 0.10 0.11
Average 0.49 0.63 0.66
5.3. Spatial and temporal evolution of the GEE

5.3.1. The temporal evolution characteristics of the GEE
Table 10 shows the GEE of China’s six areas from 2008 to 2017

based on the Super-PEBM model in the case of input-oriented VRS.
According to the results, the average GEE in China from 2008 to
2017 was 0.74, which is generally above the medium level, a fluc-
tuating growth trend occurred, and the regional differences grad-
ually narrowed. The average GEE increased from 0.72 in 2008 to
0.75 in 2017, an increase of 4%. The northern coastal area and the
middle reaches area of the Yangtze River grew faster rates of 8% and
7%, respectively, while the southeastern coastal area grew at a
slower pace and remained basically stable. Fig. 9 intuitively de-
scribes the three-stage characteristics of the GEE in the six areas of
Chinawith the change of time series. From 2008 to 2011, the overall
GEE increased rapidly, from 0.72 in 2008 to 0.79 in 2011, a change of
9% and an average annual growth rate of nearly 3%. From 2011 to
2015, the GEE first decreases and then increases, showing a V-
shaped trend. Overall, it decreased by 6% from 0.79 in 2011 to 0.74
in 2015. From 2015 to 2017, the GEE grew steadily from 0.74 in 2015
to 0.75 in 2017, with a change rate of 1% and an average annual
growth rate of 0.5%. Therefore, the temporal evolution of GEE in
China shows obvious stage characteristics, which is very similar to
the period division from the 11th five-year plan (2006e2010) to the
13th five-year plan (2016e2020) in China.
5.3.2. Spatial differentiation characteristics of the GEE
It can be intuitively found from Fig. 9 that the GEE values in the

southeastern coastal area and northern coastal area are much
higher than the national average. The GEE in the southeastern
coastal area and the middle reaches area of the Yangtze River
remained stable with the change of time series. However, the GEE
VRS

EBM Super-SBM Super-EBM Super-PEBM

1.27 1.11 1.03
1.03 1.01 1.00
0.42 0.72 0.83
0.28 0.47 0.51
0.44 0.72 0.89
0.39 0.63 0.72
0.43 0.60 0.68
0.40 0.62 0.67
1.08 1.04 1.01
1.04 1.02 1.00
0.83 0.92 0.95
0.40 0.63 0.73
0.55 0.75 0.82
0.41 0.63 0.71
1.03 1.01 1.00
0.51 0.75 0.83
0.44 0.68 0.75
0.42 0.64 0.73
1.08 1.03 1.01
0.36 0.56 0.62
1.15 1.44 1.11
0.43 0.65 0.70
0.44 0.67 0.78
0.27 0.43 0.45
0.30 0.46 0.49
0.08 0.10 0.12
1.08 1.04 1.01
1.53 1.19 1.03
0.46 0.64 0.81
0.14 0.18 0.20
0.62 0.74 0.77



Fig. 6. The GEE of three models under the CRS hypothesis in 2017.

Fig. 7. The GEE of three models under the VRS hypothesis in 2017.
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in the western area and the middle reaches area of the Yellow River
varied greatly with the time series, but eventually tended to be
stable and show a slow growth trend. As can be seen from Fig. 10,
the spatial distribution of GEE considering different efficiency
levels in 2008e2017 changes significantly. The high-efficiency area
(GEE efficiency average above 0.90 in 2008e2017) is distributed in a
relatively scattered way, with an inverted triangular spatial pattern
in Qinghai - Gansu - Beijing - Tianjin - Shanghai - Guangdong
provinces. The distribution in the areas with relatively high-
efficiency (GEE efficiency average between 0.70 and 0.90 in
2008e2017) is concentrated, which shows a zonal spatial pattern in
Shandong-Jiangsu-Zhejiang-Fujian-Hainan provinces. The
medium-efficiency area (GEE efficiency average between 0.60 and
0.70 in 2008e2017) is concentrated in central China, showing a
blocky spatial pattern. Except for Xinjiang, the distribution of low-
efficiency areas (GEE efficiency average below 0.60 in 2008e2017)
is relatively concentrated, showing a T-shaped spatial pattern of
Ningxia-Shaanxi-Shanxi-Chongqing-Guizhou provinces. Fig. 11
shows the provincial differences in GEE between the western
area and the middle reaches area of the Yellow River. The western
area includes high-efficiency, medium-efficiency, and low-
efficiency provinces, and the middle reaches area of the Yellow
River includesmedium-efficiency and low-efficiency provinces. It is
obvious that the GEE varies greatly within the area.

The above analysis shows that although the GEE varies greatly
among different areas in China, the improvement of the GEE pro-
motes the reduction of regional differences to some extent. In the
12th five-year plan (2011e2015), the government paid much
attention to industrial restructuring, energy conservation, and
emission reduction of pollutants, as well as coordinated regional
development. Therefore, after such comprehensive work on eco-
nomic growth, energy consumption, and environmental pollution,



Fig. 8. Comparison of three models under both CRS and VRS hypothesis in 2017.

Table 10
The GEE in six areas of China from 2008 to 2017.

Areas 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Northeastern area 0.63 0.64 0.65 0.66 0.65 0.66 0.64 0.63 0.65 0.65
Northern coastal area 0.86 0.88 0.89 0.94 0.92 0.92 0.92 0.92 0.92 0.93
Southeastern coastal area 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.97 0.96
Middle reaches area of the Yellow River 0.52 0.50 0.69 0.73 0.53 0.53 0.52 0.52 0.53 0.54
Middle reaches area of the Yangtze River 0.69 0.69 0.68 0.68 0.69 0.70 0.70 0.70 0.70 0.70
Western area 0.66 0.66 0.68 0.74 0.68 0.69 0.70 0.70 0.70 0.70
Average 0.72 0.72 0.76 0.79 0.74 0.74 0.74 0.74 0.75 0.75
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the GEE values in Chinese provinces have gradually increased, and
the phenomenon of “polarization” between areas has been
alleviated.

5.4. Dynamic window analysis of the GEE

In order to better show the changes of GEE in different regions
over different time periods, we select panel data from 2008 to 2017
for window analysis. The window length is three years, so the data
is divided into eight windows (2008e2010, 2009e2011,
2010e2012, 2011e2013, 2012e2014, 2013e2015, 2014e2016,
2015e2017). The GEE values of each group in China for three
consecutive years are shown in Table 11 and Fig. 12. Table 11 shows
that the average GEE at China’s provincial level from 2008 to 2010.
Qinghai has a green economy efficient in every period of three
consecutive years, and the average GEE of Beijing, Shanghai,
Guangdong, and Gansu is above 0.9. However, the GEE of Hainan
and Shaanxi stayed at 0.7 and 0.1 respectively and showed a
downward trend. The average GEEs of Shaanxi, Guizhou, Ningxia,
and Xinjiang were all below 0.5. On the whole, the average GEE
shows a slow upward trend for 30 provinces in China. Except for
Jilin, Hainan, and Shaanxi, the GEE of the other provinces changes
little, showing strong stability. As shown in Fig. 12, the average GEE
of the four windows from 2009 to 2011, 2011 to 2013, 2013 to 2015,
and 2015 to 2017 is 0.65, 0.66, 0.65, and 0.65, respectively, which
Fig. 9. GEE in six areas of China with time series change.



Fig. 10. The spatial distribution of the average GEE from 2008 to 2017 in China.

Fig. 11. Spatial difference of the GEE within two areas.
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indicates that the overall GEE in the four window periods changes
little and remains stable. It should be noted that just four windows
are shown, and those windows can cover all study periods. How-
ever, GEE varies greatly among provinces, with obvious gap be-
tween Shaanxi and Qinghai, which shows the Matthew effect of the
strong getting stronger and the weak getting weaker.

Next, the GEE in different areas of China is further analyzed. The
descriptive statistics of GEE in the six areas of China for three-year
periods are shown in Table 12 and Fig. 13. Table 12 describes the
average, standard deviation, and coefficient of variation of the GEE
in the six areas. In terms of the average value, the GEE of the
southeastern coastal area is 0.84 for the three-year periods, which
is the highest, while that of the middle reaches area of the Yellow
River is 0.42, which is the lowest. In terms of standard deviation,
the standard deviation of the western area is 0.28, which indicates
that there is a large gap in the GEE of each province within the
western area. The standard deviation of the northeastern area and
the middle reaches area of the Yangtze River is 0.03, which in-
dicates that the GEE of each province within that group is relatively
stable. Fig. 13 shows more intuitively that the variation coefficient
of the GEE in the northeastern area and the middle reaches area of
the Yangtze River is about 0.05, indicating that the GEE of the
provinces in these two areas is relatively concentrated for three-
year periods. However, the coefficient of variation of the GEE in
the middle reaches area of the Yellow River and the western area is
0.49, indicating that the GEE values of the provinces in these two
areas are relatively scattered. Fig. 14 shows the GEE of six areas in
China. It is obvious that six areas in China have a large difference in
the GEE. The average GEE in the four windows from 2009 to 2011,
2011 to 2013, 2013 to 2015, and 2015 to 2017 remains basically



Table 11
Window analysis of the GEE in Chinese provinces for periods of three consecutive years.

Provinces Average window GEE for three consecutive years

2008e2010 2009e2011 2010e2012 2011e2013 2012e2014 2013e2015 2014e2016 2015e2017

Beijing 0.99 1.01 1.01 1.00 1.00 0.99 0.98 1.00
Tianjin 0.85 0.92 0.96 0.99 0.99 0.97 0.91 0.94
Hebei 0.54 0.52 0.51 0.52 0.54 0.56 0.54 0.57
Shanxi 0.39 0.38 0.39 0.40 0.39 0.40 0.42 0.44
Inner Mongolia 0.55 0.58 0.55 0.52 0.55 0.55 0.56 0.57
Liaoning 0.52 0.56 0.56 0.58 0.59 0.59 0.57 0.59
Jilin 0.54 0.54 0.54 0.59 0.63 0.64 0.66 0.63
Heilongjiang 0.58 0.58 0.59 0.61 0.62 0.62 0.58 0.59
Shanghai 0.95 0.98 0.99 0.97 0.99 0.99 0.95 0.99
Jiangsu 0.79 0.78 0.78 0.80 0.81 0.81 0.79 0.81
Zhejiang 0.83 0.82 0.82 0.84 0.85 0.84 0.81 0.83
Anhui 0.66 0.66 0.67 0.68 0.69 0.69 0.65 0.67
Fujian 0.78 0.77 0.76 0.78 0.78 0.77 0.73 0.74
Jiangxi 0.69 0.69 0.69 0.67 0.68 0.67 0.64 0.66
Shandong 0.74 0.71 0.70 0.75 0.76 0.74 0.72 0.75
Henan 0.60 0.60 0.60 0.61 0.62 0.61 0.61 0.61
Hubei 0.66 0.64 0.62 0.66 0.67 0.66 0.63 0.64
Hunan 0.58 0.59 0.60 0.65 0.66 0.65 0.62 0.64
Guangdong 0.99 0.98 1.00 1.00 0.99 0.98 0.92 0.91
Guangxi 0.65 0.63 0.62 0.60 0.60 0.59 0.58 0.59
Hainan 0.82 0.78 0.74 0.69 0.67 0.63 0.59 0.59
Chongqing 0.49 0.50 0.52 0.57 0.61 0.62 0.61 0.64
Sichuan 0.58 0.60 0.61 0.71 0.72 0.71 0.64 0.67
Guizhou 0.49 0.44 0.43 0.42 0.41 0.41 0.41 0.41
Yunnan 0.53 0.71 0.70 0.68 0.50 0.49 0.47 0.48
Shanxi 0.16 0.18 0.18 0.17 0.03 0.03 0.03 0.03
Gansu 0.97 0.93 0.90 1.00 1.00 0.99 1.00 1.00
Qinghai 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ningxia 0.27 0.28 0.28 0.26 0.26 0.26 0.26 0.26
Xinjiang 0.10 0.10 0.11 0.11 0.09 0.10 0.10 0.10

Fig. 12. Window analysis of the GEE in Chinese provinces for periods of three consecutive years.
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stable at around 0.65. In general, it shows an inverted U-shaped
trend of first rising and then falling.
5.5. Inefficiency analysis of the GEE

Table 13 describes the inefficiency analysis of the inefficient
DMUs for the time window from 2015 to 2017. Based on the anal-
ysis, it can be seen that the average GEE from 2015 to 2017 is high in
Beijing (1.00), Tianjin (0.94), Shanghai (0.99), Guangdong (0.91),
Gansu (1.00), and Qinghai (1.00). However, there are also low
average GEE values in Shanxi (0.44), Guizhou (0.41), Shaanxi (0.03),
Ningxia (0.26), and Xinjiang (0.10). Table 13 calculates the efficiency
value of inefficient DMUs in each year of the window period from
2015 to 2017, as well as the inefficiencies from input and output
angles. At the same time, for each input-output variable, the cor-
responding ratio improvement, slack improvement, and target
value are given, providing the benchmark for the improvement of
the ineffective DMUs.

Taking Shanxi province as an example, its annual GEE values for
the time window from 2015 to 2017 are 0.42, 0.43, and 0.46,
respectively, indicating that the annual GEE in this window period
is increasing. From the perspective of input-output inefficiency,



Table 12
Descriptive statistics of the GEE in six areas of China for three-year periods.

Areas Average Standard Deviation Variation Coefficient

Northeastern area 0.59 0.03 0.06
Northern coastal area 0.80 0.19 0.23
Southeastern coastal area 0.84 0.11 0.13
Middle reaches area of the Yellow River 0.42 0.20 0.49
Middle reaches area of the Yangtze River 0.65 0.03 0.04
Western area 0.58 0.28 0.49

Fig. 13. Statistical chart of the GEE’s change in six areas of China for three-year periods.
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each year’s output inefficiency is greater than that of input in-
efficiency, and it can be concluded that the reasons for its in-
efficiency stem more from the output side. In terms of the
improvement of input and output, the Super-PEBM model com-
bines proportional improvement and slack improvement. Taking
Fig. 14. The GEE of six areas in C
the energy input of Shanxi province in 2017 as an example, the
proportion improvement should reduce 72.55 million tons of
standard coal, and the slack improvement should reduce 26.50
million tons of standard coal, with the target value of 96.82 million
tons of standard coal. Therefore, energy input should be reduced by
37% from the current level to achieve the efficiency of “green”
economy.

6. Conclusion and policy implication

6.1. Conclusion

This paper, building on environmental DEA technology, in-
troduces a technique using the Super-PEBM model and window
analysis to systematically analyze the sequential evolution char-
acteristics, spatial differentiation characteristics, and dynamic
evolution of GEE in Chinese provinces from 2008 to 2017. The main
conclusions are as follows.

First, for the evaluation of GEE in the provinces, the GEE calcu-
lated considering environmental DEA technology is lower than that
without considering the undesirable output. The combination of
environmental DEA technology and the Super-PEBM model can
more effectively calculate the GEE of China. Our results show that
considering the differences between provinces and areas in China,
the evaluation of GEE using VRS hypothesis with environment DEA
technology will be more practical. Second, in terms of time series
evolution, the average GEE from 2008 to 2017 in China was 0.74,
showing a fluctuating growth trend and gradually narrowing
regional differences. In terms of spatial differentiation, the GEE of
the southeastern coastal area and the northern coastal area is much
higher than the national average, and the GEE of the southeastern
coastal area and the middle reaches area of the Yangtze River re-
mains stable with the change of time series. Although the GEE
varies greatly among different regions in China, the improvement
hina for three-year periods.
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of GEE can promote the reduction of regional differences. Thirdly,
the window analysis based on panel data shows that, on the whole,
the GEE presents a slow upward trend. In the window period, the
overall GEE of China changes little and remains stable, but the GEE
varies greatly among different provinces. Furthermore, the average
GEE remained stable at around 0.65, showing an inverted U-shaped
trend of first rising and then falling.
6.2. Policy implication

These conclusions have important policy implications. There is
no ready-mademodel or experience to follow and learn from, sowe
need to explore a path of green economy development with Chi-
nese characteristics. First, it is important to ensure green devel-
opment through innovation in ideas and institutions. We should
further develop strategic emerging industries, accelerate green
innovation, and make breakthroughs in core and key technologies
(Zuo et al., 2019). Second, it is necessary to establish differentiated
regional development strategy and high-quality urbanization
development strategy to lead green development. We should
encourage green regional development strategies based on the
development potential of each region, and give full play to the
capabilities and potential of each area. Thirdly, try to build a green
industrial system, seek the green industrial production process
under the guidance of green innovation strategy, and achieve a
win-win situation of economic and environmental efficiency.
Finally, establish a regional environmental protection compensa-
tion mechanism, and reasonably allocate regional environmental
protection costs (Shuai and Fan, 2020). We should also actively
transform the economic development mode, develop circular
economy, low-carbon economy, sustainable economy and green
economy, and change the traditional economic growth mode
characterized by high consumption and high pollution.
6.3. Limitation and further research

Due to the limited research capacity, the following deficiencies
exist in this paper: (1) When measuring the efficiency of the green
economy, the calculation results are different due to the different
input-output system and different setting of undesirable outputs.
In the real production system, weak and managerial disposability
assumptionmay be fit more andworth in-depth study. (2) Different
divisions of regions in China may lead to different empirical results.
The division of regions in China needs to be more cautious. (3)
Environmental regulations and ecological efficiency are the driving
force and objective function of China’s economic growth, respec-
tively (Song et al., 2020a). The environmental regulation influence
on efficiency of China’s regional green economy extent and direc-
tion is not discussed, which is a limitation and the further research
direction. In the future, we will conduct in-depth research and
analysis on green development in multiple periods and at different
scales, and further, reveal the spatial-temporal variation rules of
GEE in Chinese regions. In addition, it is necessary to combine
macro and micro research, carrying out the research from the
whole to the part at multiple levels and angles, and systematically
consider the multidisciplinary interaction of green development. It
is of far-reaching significance to bring different factors into the
research framework and deeply analyze the interaction coupling
stress among various factors, so as to explore the interaction be-
tween GEE and various factors.
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