
Forecasting carbon price in Hubei Province using a mixed neural model 
based on mutual information and Multi-head Self-Attention

Youyang Ren a, Yiyuan Huang a , Yuhong Wang a,* , Lin Xia a, Dongdong Wu b

a School of Business, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China
b College of Tourism and Service Management, Nankai University, Tianjin, 300350, PR China

A R T I C L E  I N F O

Handling Editor: Xin Tong

Keywords:
Mutual information regression
Multi-head self-attention
LSTM
Carbon price forecasting

A B S T R A C T

Accurate carbon price forecasting holds significant practical importance for the Chinese government in formu
lating region-specific carbon reduction policies, balancing supply, and achieving regional green and low-carbon 
development. Considering carbon price data’s uncertainty and nonlinear characteristics, this paper constructs a 
mixed artificial intelligence model to forecast Hubei’s carbon price development. This paper proposes a novel 
decomposition and reconstruction method by integrating mutual information regression with mode decompo
sition. It integrates multiple deep learning modules to form the main forecasting framework, incorporating Multi- 
head Self-Attention with the mixed neural network. Bayesian optimization is applied to determine the modeling 
hyperparameters. The result reflects that the test group’s Mean Absolute Percentage Error, Mean Absolute Error, 
Mean Squared Error, and R-squared are 1.3176%, 0.5889, 0.7455, and 0.9256, surpassing all the comparison 
models. Compared with the baseline model, the Diebold-Mariano value is 3.7503, and the improvement ratio is 
34.7118%, 44.7655%, 33.1303%, and 6.9810%, which reveals that the model’s forecasting performance and 
generalization ability improve significantly. This paper forecasts that Hubei’s carbon price may initially 
decrease, rise considerably in the mid-term, and gradually stabilize over the next 180 days. The highest carbon 
price may reach 50.09 Yuan/tCO2e, and the lowest may reach 39.98 Yuan/tCO2e. The findings indicate that the 
Hubei government may set the price corridor for the Hubei carbon market based on the forecasting value, 
flexibly formulate dynamic carbon reduction policies, and optimize market mechanisms to gradually ensure that 
the supply and demand of the carbon market reach a new balance.

1. Introduction

Since the 21st century, the greenhouse gas emissions generated by 
human industry and production activities have increased, and the global 
greenhouse effect has intensified. As a result, the human living envi
ronment faces the threat and challenge of global warming and extreme 
climate. For the global climate problem, all countries have taken the 
initiative to control the excessive emission of greenhouse gases, led by 
CO2. Regarding technical governance, governments increase clean en
ergy consumption and reduce the dependence on fossil energy for in
dustrial development and economic construction within the country. 
They also continue developing innovative technologies to reduce carbon 
emissions through energy efficiency, Carbon capture (Soepyan et al., 
2024), and Carbon storage (Yang et al., 2023a). From the economic 
perspective, with the launch of the Kyoto Protocol, the European Union 

Emission Trading Scheme, and the California Cap-and-Trade Program, 
the carbon emission market system led by carbon price has gradually 
formed a mature carbon emission trading mechanism. The Paris 
Agreement recognizes carbon price as one of the essential governance 
modalities to achieve control over the rise in global temperature (Zhang 
et al., 2023b).

As the cost price of CO2 or other equivalent greenhouse gas emis
sions, the carbon price is related to the stability of the market supply and 
demand mechanism under carbon emission allowance trading. It is a 
core reference and economic signal for relevant enterprises considering 
purchasing carbon emission allowances or developing carbon emission 
reduction technologies. Nowadays, the European Union, the United 
States, and China have gradually implemented the carbon emission 
trading system and strive to promote global coordinated emission 
reduction and fulfill emission reduction commitments. Considering that 
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the Chinese economy is a major carbon emitter, the Chinese government 
has established seven carbon emission trading markets in different 
provinces to implement carbon emissions trading schemes, promoting 
comprehensive low-carbon transformation of regional markets. This 
conduct aims to encourage local enterprises to take the lead in partici
pating in green development investment and realize carbon emission 
reduction through market control. In the Emissions Trading System 
(ETS), market participants must purchase carbon allowances or permits 
based on carbon prices to satisfy their emission demand. Under this 
mechanism, the carbon price is an incentive or constraint on companies’ 
decisions regarding energy conservation, environmental protection, and 
carbon emissions (Fleschutz et al., 2021). Cleaner production is a vital 
link between sustainable growth and energy-saving and 
emission-reduction goals. It is a green development mode that reduces 
resource waste, lowers pollutant emissions, and enhances energy effi
ciency. Usually, carbon price development guides enterprises to make 
reasonable investments and decisions according to low-carbon devel
opment requirements (Bompard et al., 2022). Reasonable adjustments to 
carbon prices could encourage enterprises to adopt cleaner and more 
environmentally friendly production methods. By investing in 
energy-saving and cleaner production, enterprises could actively utilize 
clean energy and develop emission-reduction technologies. This could 
help them reduce their expenditures on carbon allowances, thereby 
supporting global efforts to reduce carbon emissions.

Hubei Province is an important economic and industrial town in 
central China and a vital hub connecting the eastern coast and the 
western interior. Its carbon emission reduction plays an essential role in 
China’s green transformation to achieve the dual carbon commitment. 
In addition, as one of the seven pilot carbon markets in China, the 
change in carbon price of the China Hubei Carbon Emission Exchange 
can reflect the rationality and effectiveness of carbon emission reduction 
policies and market mechanisms in the regions. Forecasting and 
researching its carbon price development is of great practical signifi
cance for formulating more accurate environmental policies and opti
mizing China’s regional carbon trading mechanisms. Considering the 
carbon price is an essential reference and evaluation index for govern
ment market supervision and enterprise market investment, both gov
ernment and enterprise decision-makers urgently need to consider the 
development of carbon prices from a forward-looking perspective. 
Therefore, a scientific carbon price forecasting system is significant for 
the government and enterprises to avoid financial risks and formulate 
carbon market control policies reasonably. However, it is difficult for the 
traditional forecasting model to capture the overall change trend of the 
carbon price. This paper proposes a mixed model for carbon price 
forecasting based on deep learning.

Regarding innovation and contribution, the proposed model in
corporates a novel modal decomposition and reconstruction module that 
combines the Complete Ensemble Empirical Mode Decomposition with 
Adaptive Noise (CEEMDAN) with mutual information (MI) regression. 
The novel module reconstructs the Intrinsic Mode Functions (IMF) by 
correlating MI interval distributions, providing input features for the 
subsequent forecasting module. In this paper, the LSTM is the baseline 
model. It further integrates CNN and Transformer to enhance the func
tionality and robustness of the deep learning module, thereby estab
lishing a mixed forecasting framework that simultaneously considers 
local patterns, long-term dependencies, and global features. This paper 
enhances the training efficiency and accuracy of carbon price fore
casting in Hubei Province by integrating advanced decomposition and 
denoising techniques with artificial intelligence forecasting models and 
optimization algorithms. As a result, it introduces a novel approach to 
handling dynamic changes in complex nonlinear data and provides an 
innovative analytical tool for carbon price forecasting.

The following constitutes the literature review as the second section, 
the methodology as the third section, and the empirical analysis as the 
fourth section. The fifth section is the conclusion.

2. Literature review

Different from the traditional time series, the carbon price develop
ment is a unique and complex time series affected by different qualita
tive and quantitative factors, which have prominent nonlinear, 
fluctuating, and uncertain characteristics (Wang et al., 2022a). In terms 
of the modeling method, scholars have conducted relevant research on 
time series forecasting and gradually formed three main forecasting 
modeling methods. They are the statistical models and their derivative 
models, the artificial intelligence forecasting models (Gao and Shao, 
2022), and the mixed forecasting models based on deep learning (Liu 
et al., 2022).

2.1. Research on the statistical model

The statistical models conduct the forecasting process through 
mathematical relationships estimating based on historical data. They 
combine with regression models or stochastic equations to express the 
characteristics of the carbon price. Under the premise of linear 
assumption, the statistical models have ideal forecasting performance 
and reasonable interpretability. Wang et al. (2020) constructed three 
combined statistical models based on ARIMA to forecast the carbon 
emission trend in China, the United States, and India. Qin et al. (2022)
combined Hodrick-Prescott and ARIMA to deal with the structural 
characteristics and trend reconstruction of carbon price forecasting. Liu 
and Huang (2021) applied GARCH to optimize the fluctuation defects of 
fractional Brownian motion and improved the referability of forecasting 
results. Alkathery and Chaudhuri (2021) proposed three multi-form 
GARCH for continued carbon market volatility and verified the diago
nal BEKK GARCH’s validity for carbon price forecasting. However, the 
statistical models are established based on regression equations and 
statistical law. These models’ forecasting performances are inaccurate 
when facing high-complexity samples. Therefore, scholars mainly apply 
classical statistical models to assist machine learning or deep learning in 
combinatorial modeling (Zhang and Wu, 2022). Some studies have 
verified that these combination models could reduce modeling 
complexity and enhance the interpretability of black-box models (Chen 
et al., 2022).

2.2. Research on the artificial intelligence model

With the continuous development of data technology, scholars 
gradually favor artificial intelligence forecasting models dominated by 
data-driven technology (Hong et al., 2024). They optimize the multi
variate configuration of neural networks by encompassing training 
techniques, hidden neurons, delays, and data segmentation strategies to 
capture better the nonlinear characteristics of time series than statistical 
models (Jin and Xu, 2024a). The artificial intelligence models have 
acceptable training and learning ability for nonlinear time series, 
resulting in better robustness and forecasting accuracy (Ye et al., 2024). 
They also could process vast amounts of data and break the sample size 
limit of the statistical models. The research of artificial intelligence 
forecasting models focuses on practical applications and the continuous 
optimization of performance. Li et al. (2020) selected the BPNN model 
to simulate the carbon price trend under the carbon trading market in six 
scenarios. Salinas et al. (2020) proposed the DeepAR, a novel probabi
listic forecasting model leveraging autoregressive RNN, and verified its 
superiority based on five datasets. Zhang et al. (2023a) combined cosine 
function and whale optimization algorithm to design a novel optimized 
extreme learning machine. Their results proved that the optimization 
algorithm could improve the stability by optimizing the structure of 
traditional machine learning methods. Van Belle et al. (2023) intro
duced a composite loss function that considers the forecasting accuracy 
and stability to extend the N-BEATS architecture. Qin et al. (2024)
forecasted the carbon price in the Guangdong and Hubei carbon markets 
with the bidirectional extended LSTM. Jin and Xu (2024b) applied 
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Bayesian Optimization (BO) and cross-validation over various kernels 
and basic functions to conduct the complex commodity price forecasting 
problem. Although artificial intelligence forecasting technology is 
maturing, it still has some limitations. The complex mapping between 
the layers leads to difficulty in optimizing node weight and structure 
parameters. Faced with complex nonlinear samples, the single artificial 
intelligence models may carry out excessively complex training and 
calculation operations with high time and space complexity. They tend 
to fall into local optimality, resulting in overfitting phenomenon. Most 
of these models lack explainability, and it is not easy to reasonably 
characterize the dynamic information.

2.3. Research on the mixed model

The single artificial intelligence model still has limitations in pro
cessing the time series data with high complexity and nonlinear char
acteristics. Scholars gradually recognize the mixed forecasting model to 
fully explore the dynamic characteristics and hidden rules (Mao and Yu, 
2024). The main idea of these mixed models is to decompose and 
reconstruct the complex data based on the principle of divide and rule 
(Wang et al., 2022b). Empirical mode decomposition (EMD) is the pri
mary decomposition strategy at present. The decomposition strategy 
could decompose any nonlinear data into IMF and stabilize the 
nonlinear data effectively. The improved EMD derivative algorithms, 
including Variational Mode Decomposition (VMD), Ensemble EMD 
(EEMD), Complete EEMD (CEEMD), and CEEMDAN, are optimized to 
deal with the problem of mode mixing. Scholars usually combine mul
tiple sets of measured values of different scales to form final forecasting 
results (Zhao et al., 2024). By contrast, the mechanism of the mixed 
forecasting model considers the sensitivity of data preprocessing and 
reduces the computational complexity of the forecasting process.

Existing research has also gradually verified that these mixed models 
have better forecasting performance than single models and provide 
convincing results (Li et al., 2023). Sun et al. (2021) proposed a fore
casting framework based on the selection and matching strategy con
taining data preprocessing and VMD. Wang et al. (2023) proposed a 
novel multi-objective forecasting model to enhance the convergence 
speed and forecasting accuracy, which significantly increases the fore
casting model’s generalization. Li and Liu (2023) proposed a mixed 
forecasting model of multiple data set decomposition and multiple 
feature screening for carbon prices. They modified and optimized the 
model’s forecasting accuracy by combining historical data with relevant 
factors. Yang et al. (2023b) applied multiscale fuzzy entropy to optimize 
the decomposition method in studying carbon price forecasting in 
China. They adopted the secondary data decomposition strategy to form 
complexity components for forecasting and reconstruction. Liu et al. 
(2024) applied the secondary decomposition with the sparrow search 
algorithm to enhance carbon price forecasting performance. Hao et al. 
(2024) established a mixed forecasting framework based on the peak 
and trough values combined with the optimal solutions of five machine 
learning methods with multi-objective optimization.

Meanwhile, the mixed model architecture of CEEMDAN and Trans
former has gradually become a hotspot for mixed modeling (Chen et al., 
2024). Wang et al. (2024) proposed a mixed model to forecast wind 
power with high and low frequency. Their mixed framework includes 
the CEEMDAN, sample entropy, Transformer, and BiGRU-Attention 
modules. The CEEMDAN and sample entropy divide the wind power 
sequence into high and low-frequency sequences, while Transformer 
and BiGRU-Attention forecast the two sequences. Zhou and Zhang 
(2024) applied CEEMDAN to decompose the battery capacity degrada
tion data and further introduced VMD to reduce the remaining noise. 
They combined the CNN with the Transformer to forecast the compo
nent sequences and form the lithium-ion batteries’ remaining useful life 
forecasting result. Yin and Zhou (2024) proposed a novel modal 
decomposition integrated model that combined CEEMDAN with other 
deep learning models for the reheater tube temperature. They designed 

the CEEMDAN and Transformer architecture to conduct the moderate 
complexity component. Yao et al. (2024) proposed a mixed model for 
total phosphorus forecasting. Their mixed model framework comprises 
CEEMDAN, fuzzy entropy, LSTM, and Transformer. They applied 
CEEMDAN to decompose water quality data, reconstructed them as 
trend-term components by fuzzy entropy, and integrated LSTM and 
Transformer to extract sequence features and improve the model’s 
forecasting performance. These researches reasonably combine CEEM
DAN’s multi-frequency decomposition and Transformer’s Multi-head 
Self-Attention mechanism to extract multi-scale features and capture 
critical patterns and trends in the sequences from a global scope, 
improving the final forecasting effect.

However, mixed models have complex structures, which increases 
the calculation and modeling complexity while improving the fore
casting accuracy. As the complexity of the hybrid model increases, so 
does the demand for computational time and resources, which compli
cates the handling of higher-dimensional data series. These models must 
rely on more extensive data samples to maintain the overall perfor
mance and generalization ability. The hyperparameters of the sub- 
models and the hybrid models should be optimally tuned within the 
context of the overall forecasting framework. It inevitably contains 
multiple sub-models and layers, leading to the risk of overfitting. Table 1
provides a detailed summary of the literature reviewed above.

2.4. Innovations and contributions

Recent research increasingly highlights the application of mixed 
models that combine decomposition techniques and hybrid forecasting 
frameworks in complex nonlinear time series forecasting. These mixed 
models represent a modeling strategy that divides and conducts the 
nonlinear time series. After decomposing the target time series, the 
mixed models typically employ entropy to reconstruct IMFs or further 
decomposition and denoising for high-frequency data. In the forecasting 
module, the mixed models could apply different individual statistical 
and artificial intelligence models or mixed forecasting frameworks to 
forecast different components of varying complexities and fuse them to 
form the final forecasting results. However, these mixed models also 
have certain limitations and gaps.

Reconstruct IMFs by sample entropy, fuzzy entropy, or other entropy 
methods for different frequency sequences after decomposition may 
incur information loss due to the simplification of information and dis
crepancies in the time scale selection. Although multiple de
compositions could reduce noise in high-frequency sequences, the 
decomposition process may also result in new information loss. Both 
modeling ideals carry the risk of introducing unnecessary noise and 
generating redundant complex computations. Additionally, employing 
individual forecasting models to handle different decomposed sequences 
may weaken the model’s training efficiency and generalization ability in 
the forecasting module. While a mixed framework with multiple mod
ules enhances performance, the model’s overall complexity also in
creases, diminishing its interpretability. Without optimization 
algorithms, the workload and difficulty of parameter adjustments for the 
individual forecasting models or mixed forecasting framework may 
become more complex. Therefore, the specific problems are primarily 
these aspects. One aspect is developing a sequence decomposition and 
reconstruction module that decreases information loss while reducing 
noise and computational complexity. Another aspect is effectively 
integrating multiple deep learning techniques into a mixed forecasting 
module, ensuring improved forecasting accuracy without introducing 
excessive noise or sacrificing efficiency. Finally, this paper constructs a 
novel carbon price forecasting model using the optimization algorithm 
to combine these modules. The novelty and contributions of the pro
posed model are summarized as follows.

Considering the high nonlinearity and dynamic variability of the 
carbon price time series, this paper applies CEEMDAN to decompose the 
original series. Then, it introduces MI and determines their interval 

Y. Ren et al.                                                                                                                                                                                                                                      Journal of Cleaner Production 494 (2025) 144960 

3 



distribution to reconstruct new IMFs. In the forecasting module, this 
paper constructs the mixed deep learning framework based on the 
modeling ideal that extracts local patterns, captures long-term de
pendencies, and learns global features, progressing from local to global 
levels. The framework integrates CNN, LSTM, and Transformer to 
extract and forecast the trend of carbon price fluctuations at different 
levels. During the forecasting process, the Multi-head Self-Attention 
mechanism from the Transformer dynamically weighs critical informa
tion. It enhances the frequency of its contribution to the model param
eters based on the importance of the information. This paper employs 
BO to optimize the global hyperparameters of the entire mixed frame
work, enhancing the model’s adaptability and forecasting performance 
for carbon price. In empirical research, this paper applies the proposed 
mixed model to forecast and evaluate the future carbon price develop
ment trend in Hubei province. It provides target reference and data 
support for the formulation of the Hubei government’s dynamic carbon 
market regulation policy.

Unlike prominent time-series models such as DeepAR, N-BEATs, and 
Temporal Fusion Transformer (TFT) (Du et al., 2024), the model pro
posed in this paper constructs a novel module combining CEEMDAN and 
MI before the forecasting module. This module provides 
better-processed input sequences to the forecasting framework by 
denoising and reconstructing IMFs. After reconstruction, each IMF 
represents a characteristic component of the original data with a specific 
frequency characteristic. According to their basic components, DeepAR 
relies on probability and RNN. N-BEATs constructs its forecasting 
modules based on the Feedforward Neural Network. TFT employs a 
predictive architecture formed by LSTM and Transformer. In contrast, 
the mixed framework proposed in this paper further synthesizes the 
advantages of CNN, LSTM, and Transformer modules, resulting in a 
more comprehensive architecture that more effectively handles the local 

and global features of complex nonlinear data. It presents a more 
enriched forecasting architecture offering greater functionality, adapt
ability, and flexibility in the forecasting process compared to the models 
above.

Compared to the architectures integrating CEEMDAN and Trans
former, the proposed model replaces the entropy-based reconstruction 
of IMFs or multiple sequence decompositions for denoising applied in 
previous studies with MI regression. This improvement retains the target 
sequence’s dynamic information and extracts more crucial components 
for future forecasting. It could reduce the adverse effects of noise and 
irrelevant factors on forecasting performance and simplify modal se
quences, reducing the complexity of subsequent computations and 
optimizing operational efficiency. The proposed model incorporates 
CNN and LSTM to process the sequence’s local and long-term data fea
tures. Compared to a single Transformer or an overly complex combi
nation of modules in deep learning frameworks, the proposed model 
maintains forecasting performance while optimizing the complexity and 
computational cost associated with excessive module integration.

3. Methodology

The carbon price forecasting model proposed in this paper is a multi- 
module combination. The progress comprises decomposition and 
reconstruction considering MI, CNN-LSTM-Transformer construction 
with Multi-Head Self-Attention, and final carbon price forecasting. BO 
determines the hyperparameters according to the MSE as the optimi
zation target. Fig. 1 shows the overall framework of the proposed mixed 
forecasting model.

Table 1 
Summary table of the related studies.

Category Models Refs Advantage Disadvantage

Statistical model ARIMA Wang et al. (2020) Fit forecasting in the short or medium term. 
The complexity is lower than that of artificial intelligence 
models or mixed models. 
The modeling and training process is convenient and 
interpretable.

Conduct the nonlinear features hard. 
The modeling relies on strict model 
assumptions. 
Have no ability to identify the extreme 
fluctuations.

HP-ARIMA Qin et al. (2022)
GARCH Liu and Huang 

(2021)
Multi-form GARCH Alkathery and 

Chaudhuri (2021)
Artificial 

intelligence 
model

BPNN Li et al. (2020) Fit forecasting in the global term. 
Easy to capture complex nonlinear features. 
Effectively handle forecasting studies with big data. 
Less constrained by data non-stationarity.

Have a high demand for large data 
sample sizes. 
Easy to trap into local optimal or 
overfitting. 
Many parameters and parameter 
adjustments are complex.

DeepAR Salinas et al. 
(2020)

ELM Zhang et al. 
(2023b)

N-BEATS Van Belle et al. 
(2023)

LSTM Qin et al. (2024)
GPR Jin and Xu (2024b)

Mixed model HPG-VMD-RE-BPNN Sun et al. (2021) Fit forecasting time series with high complexity and 
prominent nonlinear characteristics. 
Combine the advantages of multiple models to capture 
data characteristics comprehensively. 
Strong multi-scale information processing capability. 
The mixed model modeling adopts the idea of 
decomposition, forecasting, and integration, which 
improves the explainability. 
Robustness and stability are higher than that of single 
artificial intelligence models.

Have high time complexity and space 
complexity. 
The forecasting accuracy depends on the 
performance of the internal component 
models. 
The parameter adjustments depend on 
the optimization algorithm.

CEEMDAN-SE-(BPNN/ELM/ 
ENN/ET2QFNN/LSTM)

Wang et al. (2023)

ICEEMDAN-DWT-(SVR/MLP) Li and Liu (2023)
ICEEMDAN-MFE-CEEMD- 
(SSARF/CSBP/WOAELM)- 
ELM

Yang et al. (2023b)

SSA-BEMD-MPE-MVND-IMLP Liu et al. (2024)
MMVMD-(BPNN/ELM/ENN/ 
BiLSTM/CNN)-MZOA-LSTM

Hao et al. (2024)

CEEMDAN-SE-(Transformer/ 
BiGRU-Attention)

Wang et al. (2024)

CEEMDAN-VMD-(CNN- 
Transformer/BO-Transformer)

Zhou and Zhang 
(2024)

CEEMDAN-SE-(ResNet- 
CBAM/Transformer/GRU/ 
TCN)-MLP

Yin and Zhou 
(2024)

CEEMDAN-FE-LSTM- 
Transformer

Yao et al. (2024)
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Fig. 1. The overall framework of the proposed mixed model.
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3.1. The CEEMDAN based on mutual information regression

The CEEMDAN is an improved version of EEMD. It inserts adaptive 
white noise into each stage of nonlinear sequence decomposition, 
effectively controlling the noise level during each decomposition and 
avoiding redundant noise problems during reconstruction. This method 
makes the noise level proportional to the standard deviation of the re
sidual signal, thus improving the accuracy and robustness of the 
decomposition. Considering the importance of the internal dynamic 
structure and sequence information of the actual nonlinear sequences, 
this section introduces MI regression to reconstruct the essential com
ponents of carbon price decomposition. This paper selects IMFs in the 
same MI value interval for fusion to construct new IMFs and provide 
input features for the subsequent forecasting sections, which are as 
follows.

Noise n1(t) obeying normal distribution is added to the carbon price 
sample dataset A(t) to form a new sequence, A1(t), as shown in Eq. (1). 

A1(t)=A(t) + σ0αn1(t) (1) 

σ0 is the standard deviation of A(t), and α is the noise intensity control 
coefficient.

Perform EMD on the new sequence A1(t) to obtain the residual r1(t), 
as shown in Eq. (2). 

r1(t)=A(t) −
1
k
∑k

i=1
IMF1,k(t) (2) 

Take r1(t) as the target sequence A2(t), add normal distributed white 
noise, and proceed with EMD according to the above steps to get residual 
r2(t). The cycle is repeated until Ai(t) becomes monotonous and cannot 
be decomposed to form new IMFs. Finally, the decomposed IMFs and 
residuals are obtained, as shown in Eq. (3). 

ri(t)=Ai− 1(t) −
1
k
∑k

k=1
IMFi− 1,k(t) (3) 

Based on all the decomposed IMFs, this section further calculates 
their MI values for A(t) as Eq. (4). 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

MI(X;Y) = H(X) + H(Y) − H(X,Y)
H(X) = −

∑

x∈X
p(x)log p(x)

H(Y) = −
∑

y∈Y
p(y)log p(y)

H(X,Y) = −
∑

y∈Y
p(x, y)log p(x, y)

(4) 

Y represents A(t), and X represents IMFs. H(X) and H(Y) are the 
entropy. H(X,Y) is the joint entropy.

According to the MI value results of each IMF, this section sets the 
classification interval threshold. Suppose k IMFs with different fre
quency characteristics are distributed at the same interval. This paper 
constructs the new IMF as shown in Eq. (5). 

NewIMF=
∑k

k=1

IMFk (5) 

Through the improved CEEMDAN, this paper not only retains the 
internal dynamic structure of carbon price data but also refines the 
important components describing the change in carbon price. The 
reconstruction preserves the vital information that contributes the most 
to the uncertainty of carbon price and reduces the complexity of sub
sequent calculations.

3.2. The framework of CNN-LSTM-transformer

Based on the preliminary input features in Section 3.1, this part es
tablishes the proposed mixed framework consisting of the CNN, LSTM, 
and Transformer to forecast the reconstructed IMFs. Fig. 2 shows the 
overall process in this section. The whole mixed framework construction 
must carefully consider the Number of Filters and Kernel Size in LSTM- 
unit and CNN and control the speed of updating model weights in each 
step of the optimization algorithm, batch size, and look-back steps in the 
training and testing process. In the Transformer module, the dimensions 
of the attention mechanism, Feedforward Network (FFN), and the 
number of Muti-heads must be determined. 

(1) CNN

Fig. 2. The process of the proposed CNN-LSTM-Transformer.
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In the proposed mixed forecasting framework, the CNN module 
mainly extracts carbon price data’s local patterns and trend character
istics. It mainly includes the Input Layer, Hidden Layer, and Output 
Layer. The Hidden Layer comprises the Convolutional Layer, Pooling 
Layer, and Activation Layer. This paper applies the Convolutional Layer 
to perform convolution operations as Eq. (6). 

Y(i)=ReLU

(
∑K− 1

k=0

w(k) ⋅ X(i − k)+ b

)

(6) 

X is the input, i is the time step, w is the convolutional kernel weight, 
and b is the bias term. In the Activation Layer, the activation function 
ReLU is applied for nonlinear mapping to improve the overall expression 
ability. It sets the input value from less than 0 to 0 to reduce the gradient 
disappearance during training. ReLU could be expressed as follows. 

ReLU(x)=max(0, x) (7) 

The Pooling Layer reduces the computational complexity by com
pressing the feature map and reducing the parameters. It retains the 
most significant feature values and extracts the key factors by the 
maximum Pooling Layer. 

y(s)=max(x(n)), n∈ [sT, sT+ F) (8) 

y(s) is the element of the output sequence, T is the step of the pooling 
layer, and F is the size of the pooling window.

Finally, the Output Layer outputs the CNN feature sequence to pro
vide feature input for subsequent LSTM and Transformer modules. 

(2) LSTM

This section applies the LSTM module to the long-term information 
dependency in the time series data based on the CNN module output. It 
evaluates the information value of input sequences for long-term 
memory and selective forgetting of corresponding information by 
LSTM. The LSTM comprises the Forget Gate, Input Gate, Output Gate, 
and Cell State. The function of the Forget Gate is to determine the his
torical information that LSTM chooses to retain and other information 
that needs to be discarded, as shown in Eq. (9). 

ft = σ
(
Wf [ht− 1, xt ] + bf

)
(9) 

ft is the output vector between 0 and 1, indicating the degree to which 
the cell needs to be forgotten. σ represents the Sigmoid activation 
function, compressing the output value to 0 and 1. Wf is the weight 
matrix of the Forget Gate. [ht− 1, xt ] is the connection vector between the 
state ht− 1 of the previous time step and the input xt of the current time 
step. bf is the bias vector.

The Input Gate decides to update the Cell State with new informa
tion. Its expression and meaning are similar to those of the Forget Gate. 
As shown in Eq. (10), it is the output of the Input Gate, indicating the 
degree to which it needs to be updated. C̃t represents the new candidate 
Cell Sate. tanh is the activation function that scales the output value 
between − 1 and 1. Wi and bi represent the Input Gate’s weight matrix 
and bias vector. Wc and bc represent the candidate Cell State’s weight 
matrix and bias vector. 
{

it = σ(Wi[ht− 1, xt ] + bi)

C̃t = tanh(Wc[ht− 1, xt ] + bc)
(10) 

Update the Cell State according to the output of the Forget Gate and 
Input Gate. It updates the new information and removes unnecessary 
information. The Cell State Ct of the current time step is shown in Eq. 
(11). 

Ct = ft ⊙ Ct− 1+it ⊙ C̃t (11) 

The Output Gate determines the hidden state value at the current 
time step, generating the output based on the current input and Cell 

State. 

ot = σ(Wo[ht− 1, xt ] + bo)

ht = ot tanh(Ct)
(12) 

As shown in Eq. (12), ot indicates the hidden state output, and ht is the 
hidden state of the current time step. Wo and bo represent the weight 
matrix and bias vector of the Output Gate, respectively. 

(3) Transformer and Multi-head Self-Attention

In this section, the three-dimensional tensor output of the previous 
CNN-LSTM module is further introduced into the Transformer module 
for key information extraction under the Multi-head Self-Attention 
mechanism. It optimizes the shortcomings of LSTM in processing distant 
position dependencies in sequences, effectively improves the perfor
mance of the mixed framework in capturing global dependencies, and 
enhances the mixed model’s ability to capture complex patterns. The 
Transformer module comprises the Multi-head Self-Attention mecha
nism and the FFN.

The core of the Transformer module is Self-Attention. This mecha
nism generates corresponding weights for each position by measuring 
the dependencies of different positions in the sequence. According to the 
input sequence X, the vector Query Vector(Q), Key Vector(K), and Value 
Vector(V) could be obtained by the linear transformation. 
⎧
⎨

⎩

Q = XWQ
K = XWk
V = XWv

(13) 

In Eq. (13), WQ, Wk, and Wv are the trainable weight matrices, respec
tively. Subsequently, the attention weights output could be obtained by 
Eq. (14) through the Softmax function. 

Attention(X) =Attention(Q,K,V)= soft max
(

QKT
̅̅̅̅̅
dk

√

)

V (14) 

However, to better capture the global dependence of the carbon price 
sequence and optimize the diversified processing of complex internal 
data, this paper further applies the Multi-Head Attention to improve the 
global feature capture capability of the mixed framework and the 
robustness and expression capability. The Multi-head Self-Attention 
mechanism measures attention in different subspaces using multi-head 
attention simultaneously. Eq. (15) illustrates the process, where Wo is 
the weight matrix of the output. 
{

headi = Attention
(
QWQ

i ,KWk
i ,VWv

i
)

MutiHead(X) = Concat(head1, head2,…, headi)Wo
(15) 

The Transformer applies the FFN for linear transformation and 
nonlinear activation based on the multi-head attention output. In order 
to stabilize the training model, Eq. (16) conducts the output results of 
multi-head attention and FFN by residual connection and layer 
normalization. 
⎧
⎨

⎩

FFN(X) = ReLU(XW1 + b1)W2 + b2
AttentionOutputNorm = LayerNorm(X + MutiHead(X))
FFNOutput = FFN(AttentionOutputNorm)

(16) 

The output after entering the fully FFN is as follows. 

FFN(x)=max(0, xW1 + b1)W2 + b2 (17) 

In this paper, the selection of hyperparameters plays a vital role in the 
accuracy and stability of the proposed mixed forecasting framework. It 
applies the BO algorithm to improve the accuracy and training efficiency 
while considering computing power and time cost. The BO adopts the 
Gaussian Process (GP) as a probability proxy model. It applies Expected 
Improvement (EI) as a collection function to efficiently search for the 
optimal combination of hyperparameters on a global scale for the whole 
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model. The code settings of the BO algorithm are according to Eq. (18) to 
Eq. (19). 
⎧
⎪⎨

⎪⎩

f(x) ∼ GP(m(x), k(x, xʹ))

k(x, xʹ) = σ2 exp
(

−
(x − xʹ)2

2l2

) (18) 

EI(x)=
∫ ∞

− ∞
max(0, f(x) − f(x+))p(f |x)df (19) 

In GP, m(x) is the mean function, typically set to zero. x and x́  are the 
input variables representing the hyperparameters of the proposed 
model. The k(x, xʹ) is the squared exponential kernel, where σ2 and l2 are 
parameters that control the vertical variation and smoothness of the 
function. In EI, f(x) represents the predicted value of the target function 
at x, and f(x+) is the currently known optimal value of the target 
function. The collection function helps determine the next set of 
hyperparameters most likely to improve model performance, integrating 
the trade-off between global exploration and local exploitation.

3.3. The modeling steps

To sum up, Fig. 3 shows the modeling steps of the mixed model. This 
paper optimizes the coupling complexity and computing cost of different 
modules’ hyperparameter sets and fully realizes the performance po
tential of these intelligent models. 

Step 1. Collect the carbon price history data and form the mixed 
model’s input tensor according to the time step.
Step 2. Apply the CEEMDAN based on MI regression to decompose 
the historical carbon price data and reconstruct new IMFs according 
to MI value.
Step 3. Effectively integrate the CNN, LSTM, and Transformer to 
construct the mixed forecasting framework. BO is applied to deter
mine the proposed model hyperparameters. Apply the mixed fore
casting framework to train and test the reconstructed IMFs.
Step 4. Reconstruct the carbon price training set and test set results 
based on the IMFs’ training set and test set. Test and compare the 
forecasting results with other models according to the evaluation 

indexes. It aims to verify the effectiveness and superiority of the 
proposed model.
Step 5. Conduct the subsequent rolling carbon price forecasting 
based on the proposed mixed forecasting model. Formulate policy 
suggestions and references for carbon price development according 
to the forecasting results for the future.

This paper selects the Mean Absolute Error (MAE), Mean Squared 
Error (MSE), Mean Absolute Percentage Error (MAPE), and Coefficient 
of Determination (R2) to measure and evaluate the accuracy of the 
forecasting model. This paper further employs the Diebold-Mariano 
(DM) test (Zhang et al., 2024) and the Improvement Ratio (IR) test 
(Wu and Du, 2024) to analyze the degree of improvement of the pro
posed model in the ablation experiments and model comparisons.

4. Empirical analysis and results

4.1. Data collection and description

This section selects the publicly available carbon price dataset from 
the Hubei Carbon Emissions Exchange in China as the research object. It 
aims to verify the effectiveness and superiority of the proposed mixed 
model. The sample consists of 2441 carbon price data points from April 
2, 2014, to June 19, 2024, for forecasting purposes. The entire modeling 
process divides the dataset into training and test sets in the 8:2 ratio. 
Fig. 4 illustrates the daily carbon price development trend over the past 
decade.

Regarding the development trend, the carbon price in Hubei 
remained relatively low between 2014 and 2017, mostly fluctuating 
between 10 and 20 Yuan/tCO2e. The price began to rise, reaching a peak 
of nearly 70 Yuan/tCO2e by the end of 2018. Subsequently, the carbon 
price in Hubei declined but showed an upward trend. Regarding vola
tility, it experienced considerable fluctuations between 2019 and 2021, 
generally staying within 30–50 Yuan/tCO2e. A new spike occurred in 
mid-2021, with prices briefly exceeding 60 Yuan/tCO2e before rapidly 
declining. From 2022 to 2024, the carbon price has stabilized, main
taining a range of 20–30 Yuan/tCO2e. Overall, the current carbon price 
in Hubei exhibits apparent nonlinearity and uncertainty, making the 

Fig. 3. The modeling process of the BO-CEEMDAN-MI-CNN-LSTM-Transformer model.
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single model forecasting complex. Table 2 reveals the descriptive sta
tistical characteristics of Hubei carbon price.

Based on the perspective of descriptive statistical analysis, this paper 
further studies Autocorrelation, seasonality, trend, and cycle compo
nents used to describe the characteristics of carbon price data in Hubei 
Province. Fig. 5 contains the box, scatter, HP filter decomposition, and 
ACF plots of carbon price data in this paper.

Fig. 5(a) displays a scatter plot illustrating the daily fluctuations in 
Hubei carbon prices. The data show a declining trend from Day 1 to 
approximately Day 800, followed by a general upward trend. In Fig. 5
(b), this paper applies the first-order differencing of the original carbon 
price data to remove trends, showing most data fluctuating around zero, 
with only a few points exhibiting significant volatility. The box plot in 
Fig. 5(c) indicates that 25%–75% of carbon prices range between 20 and 
40 Yuan/tCO2e, with a median value of approximately 27 Yuan/tCO2e. 
Fig. 5(d) reveals that the autocorrelation coefficients of the carbon price 
samples exhibit a first-order truncation, with the maximum autocorre
lation coefficient at lag = 1 being − 0.190, indicating a significant 
negative correlation between the current day’s carbon price and the 
previous day’s carbon price. Fig. 5(e) and (f) present the trend, cyclical, 
and seasonal components extracted from daily and monthly average 
carbon prices using the HP filter. Similar to the scatter plot, the trend 
component shows an initial decrease followed by an increase. However, 
the cyclical and seasonal components fail to display clear, repetitive 
patterns, exhibiting irregular fluctuations instead. It indicates almost no 
evident presence of distinct cyclicality or seasonality in Hubei’s overall 
carbon price dynamics.

4.2. Carbon price decomposition and reconstruction

This paper first applies CEEMDAN to decompose carbon price data 
and form 9 IMFs. Fig. 6 reveals the trends and fluctuations from IMF1 to 
IMF9.

By methodically extracting different frequency components from the 
carbon price data, the nine IMFs display distinct oscillation character
istics and frequency ranges. The first three IMFs are characterized by 

significantly higher frequencies and amplitude fluctuations, identifying 
them as high-frequency components. In contrast, IMFs four through six 
show a noticeable reduction in frequency and amplitude, indicating 
more stable mid-frequency oscillations. IMF7 and IMF8 exhibit apparent, 
low-frequency, periodic changes. Lastly, IMF9 predominantly presents a 
single-frequency waveform, effectively reflecting the long-term trend in 
carbon prices within the Hubei Carbon Emissions Exchange.

To further improve the carbon price decomposition quality and 
reduce the mode mixing phenomenon, this paper restructures the 
decomposition results of CEEMDAN with MI regression. This section 
calculates the MI value of the nine IMFs for the original carbon price 
data. It applies the MI value to evaluate the direct interdependence and 
correlation between nine IMFs and original carbon. Fig. 7 clearly shows 
the MI result distribution interval of the nine IMFs, among which the MI 
values of the first six IMFs are distributed between 0 and 1, while the MI 
values of IMF7 and IMF8 are between 1 and 2. IMF9 has the slightest 
oscillation performance and has an MI value between 2 and 3. The 
purpose is to reasonably divide the MI value into three intervals for 
integration to ensure the noise reduction of carbon price data while 
retaining their data characteristics as much as possible. Therefore, in 
this paper, the first six IMFs, the mutual information values lower than 
1, similar and low, are reconstructed as the high-frequency sequences of 
the original carbon price sequences. It also fuses IMF7 and IMF8 with 
values of 1–2 to form the mid-frequency sequences. The IMF9 constitutes 
the low-frequency sequence alone.

As shown in Fig. 8, this paper further reconstructs the nine IMFs into 
three new IMFs. It further demonstrates the multi-scale characteristics of 
carbon price data significantly, simplifying the input features of the 
subsequent mixed forecasting framework and reducing computational 
complexity.

4.3. Forecasting and ablation study discussion

Based on the three reconstructed IMFs, this section adopts the pro
posed BO-CEEMDAN-MI-CNN-LSTM-Transformer to train and forecast 
the high-frequency, mid-frequency, and low-frequency sets. Fig. 9 re
flects the five high degrees of influence time steps on forecasting during 
training. Among them, for reconstructing the new IMF1, the positive 
contribution values of the 15th time step are more significant, and the 
response sensitivity to features is the highest. Similarly, for recon
structing the new IMF2 and IMF3, the 15th and the 20th time steps have 
the most substantial positive influence on the output of the corre
sponding IMFs. Therefore, considering that the eigenvalues of these time 
steps have a more significant positive influence and contribution to the 
output of the proposed mixed model, it could further determine the 
number of the look-back steps in the forecasting process.

Table 3 describes the final specific modeling parameters of fore
casting by BO. Fig. 10 shows the proposed mixed model’s forecasting 
effect of the three reconstructed IMFs in the training and test groups. It 
reflects that the mixed model simulates the development trend and 
fluctuation amplitude of the three new IMFs, and the forecasting values 
are consistent with their development and changes.

To further verify the validity of the proposed mixed model, this paper 
fuses the forecasting results of the three new IMFs to form the final 
carbon price forecasting results in the training and test groups. Based on 
the forecasting effect and the concentration degree of the actual and 
forecasting carbon price values in Fig. 11, the actual and forecasting 
values are concentrations in the training group. Meanwhile, Fig. 11
shows that the test group maintains a high concentration of actual and 
forecasting values. In the test group, the actual and forecasting values of 
the carbon price are mainly concentrated near the approximate baseline, 
indicating that the forecasting value and the actual value have a strong 
positive correlation. Among them, the test group’s carbon price fluctu
ation is consistent with the development trend, proving the model has 
high forecasting accuracy and reliability.

Finally, Fig. 12 shows the overall forecasting effect of the mixed 

Fig. 4. The development trend of the carbon price in Hubei.

Table 2 
The descriptive statistical characteristics of Hubei carbon price (2014–2024).

Empirical 
Sequence

Units Minimum Maximum Mean Standard 
Deviation

Daily carbon 
price

RMB 
(Yuan/ 
tCO2e)

10.48 61.89 29.63 11.16
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Fig. 5. The descriptive statistical plots for the carbon price in Hubei.
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model. Table 4 illustrates the results under different evaluation in
dicators, which convinces the training and test groups to have accept
able forecasting accuracy. The results of the test group are almost better 
than those of the training group, reflecting that there is no overfitting 
problem in the forecasting calculation. In contrast, MSE and MAE in the 
test group are better than those in the training group, which shows that 
the mixed model has better generalization ability in the subsequent 
forecasting period. The test group also shows a significant increase in 
MAPE, reaching 1.3176%, and R2 is higher than 0.9, indicating that the 
proposed model is adaptable to the carbon price development in Hubei. 
It could be rational and reliably applied to the subsequent continuous 
update of carbon price data forecasting. 

(2) Ablation experiment

Based on the data of the test group, this paper conducts the ablation 
experiment to verify further improvement in the effect of different 
modules in the mixed model on forecasting ability. This paper applies 
LSTM as the baseline model to forecast the Hubei carbon price.

This section constructs CEEMDAN-LSTM, CEEMDAN-MI-LSTM, 
CEEMDAN-MI-LSTM-Transformer, CEEMDAN-MI-CNN-LSTM, CEEMDAN 
-MI-LSTM-Attention, and CEEMDAN-MI-CNN-LSTM-Transformer as com
parison models with different module combinations applied in this paper. 
Table 5 shows the experimental results.

As shown in Fig. 13, with the continuous addition of MI regression, 
CNN, and Attention mechanism, different mixed modules could improve 
the forecasting effect gradually. In Table 5 and Fig. 13, each added 
module optimization has different degrees of impact on the forecasting 
performance. According to the forecasting effect results of CEEMDAN- 
MI-LSTM, MI regression optimizes the CEEMDAN-LSTM’s forecasting 
accuracy. The MAPE increases from 1.9588% to 1.7627%, and MAE 

Fig. 6. The IMF results based on CEEMDAN.
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increases from 0.8890 to 0.7975. However, it negatively affects the MSE, 
as shown in Fig. 13, where its MSE is higher than the other test results. In 
reconstructing IMFs based on the MI value, some data features may be 
affected while reducing the noise. From the perspective of feature 
retention, this paper preliminary considers the trade-off between noise 
reduction and feature loss. It constructs the trade-off perspective by 
quantifying the changes in MI and sample entropy. Before reconstruc
tion, the total MI value is approximately 7.1461, while the total MI value 
of the new IMFs after reconstruction is 4.8274. The feature retention 
may reach 67.55%. However, this paper quantifies the effect of noise 
reduction through sample entropy reduction. It finds that the sum of the 
sample entropy of all IMFs before reconstruction is approximately 
2.4394. After reconstruction, the new IMFs’ sample entropy sum is 
about 0.6471, about 26.53% of the value before reconstruction. The sum 
of sample entropy decreases significance, which indicates that the IMFs’ 
uncertainty and randomness are weakened, and the noise influence is 
reduced. Therefore, the MI reconstruction may reach a referenceable 

trade-off that loses about 32.45% of feature information and reduces 
approximately 73.47% of noise in this paper. Compared with the IMFs 
produced by CEEMDAN decomposition, the range of the new high- 
frequency IMF after MI reconstruction becomes extensive, and the 
short-term fluctuation is more substantial, increasing MSE. Therefore, 
regarding the new high-frequency sequences containing more short- 
term fluctuations and noise, this paper considers enhancing the fore
casting module’s capacity for local feature extraction to improve the 
overall forecasting performance of the mixed model. Based on the LSTM, 
this paper further adds the CNN module. In this improvement, the CNN 
applies convolutional filters that slide across the input feature data for 
localized computations, while max-pooling reduces feature dimensions 
and preserves critical feature information. This enhancement 
strengthens the new module’s ability to extract local features in the time 
series data. Meanwhile, this paper also tries to weaken the influence of 
MI on MSE by improving the ability of global feature extraction and 
introduces the Transformer module after the LSTM module for testing. 

Fig. 7. The results and distribution of the MI value.

Fig. 8. The new IMF reconstruction based on MI regression 
Notes: New IMF1 represents the high-frequency sequence, New IMF2 represents the mid-frequency sequence, and New IMF3 New IMF3 represents the low- 
frequency sequence.
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Fig. 9. The SHAP plot for the impact on model outputs.
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With the addition of CNN and Transformer, CEEMDAN-MI-CNN-LSTM 
or CEEMDAN-MI-LSTM-Transformer could further optimize 
CEEMDAN-MI-LSTM. The changes in Fig. 13 reflect that the selected 
error indicators are all reduced, and their R2 is also slightly improved 
compared with the CEEMDAN-MI-LSTM. Improving the mixed model’s 
local or global feature extraction ability through CNN or Transformer 
could effectively alleviate the adverse effects of the MI regression.

In order to further prove the advantages and effectiveness of the BO- 
CEEMDAN-MI-CNN-LSTM-Transformer, this paper conducts the statis
tical hypothesis test DM test and calculates IR further to discuss the 
improvement effect of the different forecasting modules.

This paper applies the DM test to determine if there are significant 
differences between the baseline LSTM in the ablation study. The eval
uation criteria refer to whether the DM of the two comparison models is 
more significant than Zα/2 at a given significance level α. Table 6 shows 
the DM values for comparing their improvement with the LSTM.

According to the DM test results, each model improvement could 
improve the forecasting performance of the baseline model. DM values 
of all improved models are significantly higher than 1.96, indicating that 
the added modules (CEEMDAN, MI, CNN, Attention, and Transformer) 

contribute significantly to the model’s predictive performance at the 
10% significance level. In contrast, based on CEEMDAN-MI-LSTM, CNN, 
Transformer, and BO optimization are further added, and the DM values 
of these models are higher than 2.58. The DM values mean that at the 
significance level of 1%, the predictive performance of these models is 
significantly different from the LSTM. Further introducing artificial in
telligence forecasting models to optimize the mixed forecasting module 
could improve forecasting performance significantly. Among them, 
either CNN or Transformer integration has greatly enhanced forecasting 
performance, with CEEMDAN-MI-CNN-LSTM showing a more signifi
cant improvement over LSTM than CEEMDAN -MI-LSTM-Transformer.

Regarding the impact of individual modules on forecasting perfor
mance, CNN outperforms Transformer. However, when both CNN and 
Transformer are incorporated simultaneously into the LSTM, resulting in 
the CEEMDAN-MI-CNN-LSTM-Transformer model, the DM value further 
escalates to 3.7486. This DM value substantiates the synergy between 
CNN’s local feature extraction and the Transformer’s global information 
integration, which collectively elevates the predictive module’s perfor
mance, which is better than that of each CNN or Transformer. Finally, 
the BO-CEEMDAN-MI-CNN-LSTM-Transformer has the highest DM 
value of 3.7503, which has significant advantages in forecasting per
formance compared with other models with different modules. It in
dicates that optimizing hyperparameters through BO could improve the 
model’s operational efficiency and its overall forecasting performance.

Based on the DM test, this paper further calculates the IRs of different 
models’ MAE, MSE, MAPE, and R2 in the ablation experiment. Table 7
reveals the IRs in Dataset 1 and Dataset 2.

The results from Table 7 indicate that mere decomposition and 
reconstruction based on CEEMDAN and MI do not significantly boost the 
LSTM’s forecasting capabilities. As LSTM progressively integrates with 
CNN and Transformer within the forecasting module, the IR exhibits an 
increasing trend, with the first three metrics exceeding 15%, demon
strating that adding new modules could directly enhance the forecasting 

Table 3 
The determined modeling parameters.

Best Parameters/IMF New IMF1 New IMF2 New IMF3

LSTM Unit 70 20 70
CNN Filter 128 128 128
CNN Kernel Size 5 5 3
Learning Rate 1e-05 1e-02 1e-04
Batch Size 16 32 32
Look-Back 15 15 20
Transformer Head Size 32 32 128
Transformer Muti-heads 8 8 2
FFN Dim 32 64 128
Best MSE 0.7285 0.0009 0.0108

Fig. 10. The forecasting effect of the new IMFs in the training and test groups 
Notes: Fig.(a), Fig.(b), and Fig.(c) show the forecasting effect in the training group. Fig.(d), Fig.(e), and Fig.(f) show the forecasting effect in the test group.
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performance. On the other hand, IRs from Dataset 1 and Dataset 2 
further reveal slight differences in the degree of model optimization 
between CNN and Transformer.

Therefore, this paper further investigates the roles of the relative 
effectiveness of CNN and Transformer on datasets with different statis
tical properties. This paper applies the new IMFs that retain some 
original carbon price data features. Fig. 8 shows that the three recon
structed new IMFs exhibit different noise levels: New IMF1 has the 
highest noise, New IMF2 has moderate noise, and New IMF3 has the least 
noise. This paper applies CNN and Transformer to test the forecasting 
performance of these new IMFs, and Table 8 shows the test results.

Fig. 11. The forecasting effect of the carbon price in the training and test groups 
Notes: Fig.(a) and Fig.(b) show the forecasting effect and concentration of actual values and carbon prices in the training group. Fig.(c) and Fig.(d) show the test 
group’s forecasting effect and concentration of actual values and carbon prices.

Fig. 12. The overall forecasting effect of the carbon price.

Table 4 
The evaluation results of the proposed model.

Evaluation Metrics/Groups Training Group Test Group

MAE 0.7452 0.5889
MSE 2.0034 0.7455
MAPE 2.7487 1.3176
R2 0.9741 0.9256
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As shown in Tables 8 and in the comparison of the New IMF1 dataset, 
Transformer outperforms CNN. This paper suggests that when fore
casting datasets with higher noise levels, such as New IMF1, CNN may be 
negatively affected by excessive and useless noise that interferes with 
local features, which weakens the model’s performance. In contrast, 
Transformer, with its superior global modeling capability, may effec
tively capture long-term dependencies in the data and reduce noise 
interference. Therefore, Transformer may be preferred over CNN when 
forecasting high-noise datasets. However, for New IMF2 and New IMF3, 
CNN and Transformer shift their roles in terms of forecasting perfor
mance, with CNN outperforming Transformer on moderate-noise and 
low-noise datasets. Specifically, New IMF2 has less noise than New IMF1, 
and New IMF3 shows more pronounced trend components with even less 
noise and more prominent local features. Therefore, CNN’s ability to 
capture local features becomes increasingly evident in both cases, and its 
performance generally outperforms Transformer. Thus, this paper pro
poses that the roles of relative effectiveness between CNN and Trans
former in different datasets may shift according to their noise level 
variation. In this paper, the performance of Transformer may be superior 
to CNN when forecasting high-noise datasets. When forecasting 
moderate-noise and low-noise data sets, CNN may outperform 
Transformer.

Additionally, the IRs for CEEMDAN-MI-CNN-LSTM-Attention and 
CEEMDAN-MI-CNN-LSTM-Transformer in Datasets 1 and 2 confirm that 
Multi-head Self-Attention has a more substantial optimizing effect 
compared to regular Attention mechanisms. In Dataset 2, the IRs for BO- 
CEEMDAN-MI-CNN-LSTM-Transformer relative to CEEMDAN-MI-CNN- 
LSTM-Transformer are below 10%, indicating that its performance 
optimization is less significant than the introduction of different artifi
cial intelligence models. However, BO addresses the determination of 
hyperparameters for the proposed model, and similar to MI, its impact 
and application are more on enhancing computational efficiency and 
reducing computational costs rather than improving model 
performance.

4.4. Model comparison

This section further verifies the superiority of the proposed mixed 
model and the referability of subsequent forecasting results by 

Table 5 
The evaluation results of the models with different module combinations.

Models/Evaluation Metrics MAE MSE MAPE R2

LSTM 0.9020 1.3497 1.9704 0.8652
CEEMDAN-LSTM 0.8890 1.0337 1.9588 0.8970
CEEMDAN-MI-LSTM 0.7975 1.1151 1.7627 0.8889
CEEMDAN-MI-LSTM-Transformer 0.7457 0.9860 1.6517 0.9017
CEEMDAN-MI-CNN-LSTM 0.7385 0.9733 1.6361 0.9031
CEEMDAN-MI-CNN-LSTM-Attention 0.6499 0.8303 1.4495 0.9173
CEEMDAN-MI-CNN-LSTM-Transformer 0.6256 0.8007 1.3924 0.9201
BO- CEEMDAN-MI-CNN-LSTM- 

Transformer
0.5889 0.7455 1.3176 0.9256

Fig. 13. The forecasting effect under the influence of different modules.

Table 6 
The evaluation results of the models with different module combinations.

Models DM value

LSTM –
CEEMDAN-LSTM 2.0561
CEEMDAN-MI-LSTM 2.3434
CEEMDAN-MI-LSTM-Transformer 2.6698
CEEMDAN-MI-CNN-LSTM 3.5200
CEEMDAN-MI-CNN-LSTM-Attention 3.6725
CEEMDAN-MI-CNN-LSTM-Transformer 3.7486
BO-CEEMDAN-MI-CNN-LSTM-Transformer 3.7503

Notes: Z0.01/2 = 2.58, Z0.05/2 = 1.96, Z0.10/2 = 1.64. DM value represents the 
DM test results of different models and the baseline model LSTM.

Table 7 
The improvement ratios of the BO- CEEMDAN-MI-CNN-LSTM-Transformer with other models.

Models Dataset 1 Dataset 2

IRMAE(%) IRMSE(%) IRMAPE(%) IRR
2(%) IRMAE(%) IRMSE(%) IRMAPE(%) IRR

2(%)

LSTM – – – – – – – –
CEEMDAN-LSTM 1.44% 23.41% 0.59% 3.68% – – – –
CEEMDAN-MI-LSTM 11.59% 17.38% 10.54% 2.74% 10.29% 7.87% 10.01% 0.90%
CEEMDAN-MI-LSTM-Transformer 17.33% 26.95% 16.17% 4.22% 6.50% 11.58% 6.30% 1.44%
CEEMDAN-MI-CNN-LSTM 18.13% 27.89% 16.97% 4.38% 7.40% 12.72% 7.18% 1.60%
CEEMDAN-MI-CNN-LSTM-Attention 27.95% 38.48% 26.44% 6.02% 12.00% 14.69% 11.41% 1.57%
CEEMDAN-MI-CNN-LSTM-Transformer 30.64% 40.68% 29.33% 6.35% 15.29% 17.73% 14.90% 1.88%
BO-CEEMDAN-MI-CNN-LSTM-Transformer 34.71% 44.77% 33.13% 6.98% 5.87% 6.89% 5.37% 0.60%

Notes: Dataset 1 contains the IR of different modules added in the ablation experiment with the baseline model LSTM. Dataset 2 contains the IR between the adjacent 
improved models with different modules gradually added. The IRs of CEEMDAN-MI-CNN-LSTM and CEEMDAN-MI-LSTM-Transformer are according to the 
CEEMDAN-MI-LSTM. The IRs of CEEMDAN-MI-CNN-LSTM-Attention and CEEMDAN-MI-CNN-LSTM-Transformer are according to the CEEMDAN-MI-CNN-LSTM.

Table 8 
The performance of CNN and Transformer on the new IMFs.

Model IMFs MAE MSE R2

CNN New IMF1 0.6572 0.8958 0.5560
New IMF2 0.0937 0.0134 0.9983
New IMF3 0.2718 0.0965 0.8191

Transformer New IMF1 0.5959 0.7487 0.6289
New IMF2 0.1777 0.0434 0.9944
New IMF3 0.3457 0.1252 0.7653
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comparing the forecasting ability of the proposed model with other 
models. This paper selects these benchmark models: GARCH, SVM, 
ANN, CNN, RNN, LSTM, GRU, CNN-LSTM, and TFT as the comparison 
models. Table 9 and Fig. 14 illustrate the comparison results from the 
perspective of visualizing and measuring results.

Fig. 14 and Table 9 show that SVM and GARCH have the lowest 
overall performance among all the compared models. In Fig. 15(a) and 
(b), their accuracy distribution deviates significantly from the other 
models. As traditional statistical and machine learning models, these 
two methods have limited capability in capturing nonlinear and com
plex dynamic features, making them inadequate for effectively handling 
the strong nonlinearity and temporal dependencies in Hubei’s carbon 
data. As shown in Fig. 14, all the neural network forecasting models 
have good adaptability to the nonlinearity and uncertainty of carbon 
price. However, in terms of data differences, in Fig. 14, (a), (b), and (e)
reflect the unsatisfactory forecasting effect of LSTM, CNN, and CNN- 
LSTM. The numerical results in Table 9 also demonstrate the accuracy 
shortcomings of the three models, and the forecasting accuracies of 
these three models are weaker than those of other models. The distri
bution of evaluation indicators in Fig.15 (c) shows that the accuracy of 
these three models is similar, and the average amplitude and percentage 
deviation of their errors are higher than those of other neural network 
models.

The CNN-LSTM optimizes LSTM by introducing the CNN module to 
improve the forecasting performance, proving that combined fore
casting could effectively conduct the data complexity in the forecasting 
process. However, its forecasting effect is still inferior to others. On the 
contrary, the forecasting effect of CNN is higher, indicating that the 
direct combination of CNN and LSTM cannot fundamentally optimize 
the forecasting effect on carbon price data and may even produce 
adverse effects. The CNN is adept at quickly capturing local features 
within the data, but this may not align well with the need for long-term 
dependencies characteristic of time series data. When the local features 
of Hubei’s carbon price data are directly inputted to LSTM for process
ing, they may be insufficient or unsuitable for representing the long- 
term dynamic changes in the time series. It could lead to the mixed 
model’s inability to effectively utilize this information or even result in 
overfitting due to feature mismatch and increased complexity, ulti
mately impacting overall performance. In contrast, the BO-CEEMDAN- 
MI-CNN-LSTM-Transformer first preprocesses and decomposes the 
time series using CEEMDAN-MI, extracting multiple IMFs and inte
grating only those IMF components that contribute most to forecasting 
performance through MI regression. It enhances the quality and rele
vance of the input features, which helps CNN more accurately extract 
useful local features, thus enhancing the quality of local feature inputs. 
Following the CEEMDAN-MI-CNN allows LSTM to process and maintain 
these features’ temporal dependencies more effectively. Finally, the 
Transformer at the end of the model comprehensively models’ re
lationships and integrates features from the information processed by 
the preceding network layers. As shown in Table 9, the forecasting ac
curacy and robustness of the BO-CEEMDAN-MI-CNN-LSTM-Transformer 

are superior to CNN and CNN-LSTM.
This paper also applies the TFT to forecast carbon price data for 

further exploration. Unlike CNN-LSTM, TFT’s primary structure consists 
of the LSTM and Transformer. The Python and the TensorFlow-based 
deep learning environment in VSCODE are applied to implement the 
TFT. This paper uses grid search and stepwise manual tuning to deter
mine the TFT’s hyperparameter settings and optimize its training pro
cess. In this paper, the applied TFT’s Look-Back is 30, Batch-Size is 32, 
Transformer Muti-heads is 2, FFN Dim is 128, and the Vector Dim is 64.

As shown in Table 9, TFT’s performance surpasses most models 
among the comparisons. It indicates that the basic framework of TFT 
demonstrates good forecasting performance. However, compared to the 
BO-CEEMDAN-MI-CNN-LSTM-Transformer, the TFT applied in this 
paper does not include the decomposition and reconstruction module. It 
may lead to some noise components remaining in the forecasting 
framework, which affects the TFT’s performance when handling the 
original carbon price sequences. On the other hand, the proposed model 
adopts an integrated framework combining CNN, LSTM, and Trans
former. Compared to the TFT’s core framework, which consists of LSTM 
and Transformer, the BO-CEEMDAN-MI-CNN-LSTM-Transformer’s 
framework further benefits from CNN’s ability to capture local features. 
Therefore, these may lead to the BO-CEEMDAN-MI-CNN-LSTM-Trans
former’s function being more powerful and outperforming TFT in Hubei 
carbon price forecasting.

On the other hand, RNN, ANN, GRU, and TFT all have reasonable 
forecasting effects on the carbon price data provided in this paper. Their 
forecasting accuracy is better than that of the above five models. Fig.15 
(c) clearly shows that in terms of the distribution of MAPE, MSE, and 
MAE, the error evaluation indicators of RNN are significantly higher 
than those of ANN and GRU. The accuracy gap between ANN and GRU in 
MAPE is noticeable, while MSE and MAE are close. The data from 
Table 9 more intuitively show that ANN is superior to GRU.

In contrast, according to Table 9 and Fig. 15(c), the proposed BO- 
CEEMDAN-MI-CNN-LSTM-Transformer’s MAPE is significantly superior 
to other comparison models. This paper further validates the proposed 
model performance through the DM test. Table 10 reveals the DM test 
values between BO-CEEMDAN-MI-CNN-LSTM-Transformer and other 
models. The DM test values are greater than 1.64 and exceed 1.96 for all 
models. It indicates a significant difference in forecasting performance 
at the 10% significance level when forecasting Hubei carbon prices 
between the BO-CEEMDAN-MI-CNN-LSTM-Transformer and the com
parison models. Considering the evaluation metrics and DM test results, 
the BO-CEEMDAN-MI-CNN-LSTM-Transformer model shows at least a 
10% significance level difference in forecasting performance compared 
to other models. It confirms that the proposed model achieves higher 
prediction accuracy in forecasting the Hubei carbon price than the other 
models from multi-angle validation. This paper verifies that the BO- 
CEEMDAN-MI-CNN-LSTM-Transformer can effectively explains the 
variability of carbon price data in Hubei Province than other models.

Therefore, the mixed model BO-CEEMDAN-MI-CNN-LSTM- 
Transformer is superior to the comparison models in the MAE, MSE, 
MAPE, R2, and DM test results. It demonstrates the model’s superiority 
and verifies the validity of the proposed modeling framework. The result 
shows that the interaction of data decomposition technology, optimi
zation algorithm, and attention mechanism could comprehensively 
improve the overall forecasting performance of the model under the 
same basic model. However, there is still uncertainty about the fore
casting effect of the direct combination with different modules. When 
constructing the mixed mode, it is necessary to focus on the adaptability 
and interaction between the optimized modules during the parameter 
determination.

4.5. Additional analysis and discussion

(1) Subsequent forecasting

Table 9 
The comparison between the proposed model and other forecasting models.

Models/Evaluation Metrics MAE MSE MAPE R2

BO-CEEMDAN-MI-CNN-LSTM- 
Transformer

0.5889 0.7455 1.3176 0.9256

CNN-LSTM 0.8560 1.3313 1.8775 0.8670
LSTM 0.9020 1.3497 1.9704 0.8652
TFT 0.6750 0.8994 1.5134 0.9102
ANN 0.6207 0.7719 1.3850 0.9229
CNN 0.7862 1.0056 1.7311 0.8995
GRU 0.6618 0.8656 1.4673 0.9135
RNN 0.7116 0.9861 1.5817 0.9015
SVM 1.9737 4.6194 4.4019 0.5399
GARCH 22.2111 503.6488 48.8360 − 49.2608
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This paper further applies the proposed BO-CEEMDAN-MI-CNN- 
LSTM-Transformer to forecast the carbon price development trend of 
the Hubei Carbon Emission Exchange for the next 180 days. Fig. 16

shows the forecasting trend. Table 11 describes the statistical charac
teristics of the forecasting.

Fig. 16 indicates that, over the forthcoming period, the carbon price 

Fig. 14. The visualization of forecasting effects of comparison models.

Fig. 15. The visualization of forecasting effects of comparison models 
Notes: (a) contains all models, (b) contains all models expect GARCH, (c) contains all models expect GARCH and SVM.
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in Hubei exhibits relatively gradual multi-stage variations. Initially, 
there is a continuous downward trend, followed by a significant increase 
after 66 days, peaking at approximately 50.09 Yuan/tCO2e on the 119th 
day. Subsequently, the carbon price will slightly decline and stabilize at 
49 Yuan/tCO2e by December. Compared to the carbon price trends over 
the past decade, the statistical characteristics in Table 11 indicate that in 
the near term, the carbon price level in Hubei may remain at a relatively 
high average of 45.37 Yuan/tCO2e.

As shown in Fig. 17, this paper further conducts the descriptive 
statistical discussion to explore the development and changes in Hubei 
carbon prices over the next 180 days. Fig. 17(a) demonstrates that the 
nonlinear characteristics of the predicted carbon prices resemble the 
actual historical fluctuations, indirectly confirming that the forecasting 
results are similar to the historical development traits of Hubei’s carbon 
prices. Fig. 17(b) reveals that the interquartile range (25%–75%) of the 
forecasting carbon prices may be between 42 and 46 Yuan/tCO2e. 
Fig. 17(c) illustrates that over the next 180 days, Hubei may continue to 
exhibit an upward trend in carbon prices, indicating a consistency 
within the historical character, yet with noticeable periodic fluctuations. 
These cycles display consistent amplitudes and frequencies, objectively 
reflecting periodic characteristics in Hubei’s short-term carbon prices. 
Moreover, Fig. 17(d) indicates that the predicted carbon price series 
exhibits significant positive autocorrelation in the short term, which 
diminishes with increasing lags and eventually shifts to negative cor
relation, further substantiating the short-term periodic influence on 

Hubei’s carbon prices. Therefore, this paper speculated that while the 
carbon price in Hubei Province would maintain an increasing historical 
trend in the short term, seasonal factors or other cyclical policies might 
be present based on the statistical analysis. 

(2) Subsequent forecasting comparison

This paper further applies the comparison model adopted in Section 
4.4 to verify and demonstrate the reference and reliability of the sub
sequent forecasting. It compares their subsequent forecasting results 
with the proposed model. Fig. 18 reflects the forecasting trends of these 
models over the next 180 days.

Among them, the SVM presents a sharp downward trend, starkly 
contrasting with Hubei’s historical carbon price movements. Given that 
this paper does not incorporate additional factors to adjust the model, it 
implies that SVM could not adequately capture the potential volatility in 
future carbon prices. In contrast, the GARCH exhibits a singular linear 
trend with stable progression. The TFT’s forecasting reflects a smooth 
upward trend. Although its forecast results align with the developmental 
patterns of carbon prices compared to the previous two models, it still 
fails to capture the significant volatility characteristics of carbon prices. 
Regarding the forecasting results, the parameters of these models need 
to be further adjusted to form forecasting results with reference.

The forecasting results of the LSTM show a sharp decline trend, and 
its carbon price prediction result even reaches 0.31 yuan/CO2e. These 
results deviate significantly from the historical carbon price range. In 
contrast, the subsequent forecasting results of CNN-LSTM and GRU 
develop slowly, reflecting the insufficient response of the two models to 
the fluctuations of the carbon market and failing to capture the possible 
cyclical fluctuations in the later period. Although the forecasting results 
of ANN and CNN show different upward and downward trends at the 
initial stage, they may oversimplify the complexity of the carbon market 
under certain conditions. It may lead to a disconnect between fore
casting results and the reality of the market in practical application.

The subsequent forecasting of RNN reflects slightly more volatile 

Table 10 
DM test values of the proposed model and comparison forecasting models.

Models CNN-LSTM LSTM TFT ANN CNN GRU RNN SVM

BO-CEEMDAN-MI-CNN-LSTM-Transformer 2.7698 3.7503 2.3121 1.8842 3.7744 3.3208 4.0937 4.9872

Fig. 16. The forecasting trends of Hubei carbon price after 180 days.

Table 11 
The descriptive statistical characteristics of Hubei carbon price forecasting after 
180 days.

Empirical 
Sequence

Units Minimum Maximum Mean Standard 
Deviation

Daily carbon 
price

RMB 
(Yuan/ 
tCO2e)

39.82 50.09 45.37 3.88
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carbon price changes, indicating that it can capture some carbon market 
dynamics. However, the overall development of RNN is still changing 
smoothly, which reflects that it is difficult for RNN to effectively reflect 
subsequent market changes after reaching a particular carbon market 
state. Although RNN is relatively effective in processing local carbon 
price forecasting sequences, as the number of forecasting steps in
creases, it may not be sufficient to deal with the nonlinear and complex 
characteristics of subsequent medium and long-term development in the 
carbon market in Hubei.

However, the forecasting development of the BO-CEEMDAN-MI- 
CNN-LSTM-Transformer contains both trend and periodic fluctuation 
characteristics. It significantly captures the future rising and stable trend 
of the carbon price in Hubei Province and identifies seasonal fluctua
tions. For the next 180 days, Hubei Province may be in summer, autumn, 
and early winter. The subsequent forecasting trends indicate that 
although electricity demand typically rises during the summer months, 
there may have been an oversupply of carbon allowances in the Hubei 
carbon market, leading to a short-term decline in carbon prices from 
June to August. It also reflects the carbon market’s early response to the 
summer demand peak. From August to October, the peak agricultural 
production in autumn and storage energy production for winter may 
contribute to the significant increase in the carbon price. It effectively 
depicts the carbon market’s expectation of energy demand in autumn 

and winter and the corresponding increase in carbon quota purchasing 
behavior. Finally, in the early winter, the advanced storage of autumn 
and the energy consumption required for winter heating may increase 
the development trend gradually. Although the carbon price does not 
reach the historical high of 61.89 Yuan/tCO2e, it remains at a mid-to- 
high price level. 

(3) Policy recommendations

This section proposes the following policy recommendations based 
on the anticipated forecasting results. First, a reasonable short-term 
price corridor for Hubei’s carbon market should be established to pro
vide a calibrated buffer against sudden market fluctuations. The Hubei 
government could consider the forecasting limits (between 39.82 and 
50.09 Yuan/tCO2e) to scientifically determine the upper and lower 
bounds of the price corridor. In implementing the government regula
tion, the Hubei provincial government could refer to the EU ETS Market 
Stability Reserve (MSR) framework (Perino, 2024) by adjusting carbon 
allowance supplies to stabilize prices and mitigate potential short-term 
extreme volatility. The carbon price corridor could be set as the regu
latory benchmark of the MSR. When market prices approach either 
boundary, adjustments in carbon allowance supply could counter 
excessive market swings, maintaining price fluctuations within this 

Fig. 17. The descriptive statistical plots for Hubei carbon price after 180 days.
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range. The Hubei government’s short-term upper and lower carbon 
price limits could deliver clear carbon cost signals, encouraging enter
prises to invest in green technologies and process improvements pro
actively to guide low-carbon and cleaner production practices, fostering 
green and low-carbon regional development.

Second, regional carbon reduction policies should be adjusted 
dynamically based on the dual intervention of the “visible hand” and the 
“invisible hand.” The Hubei government should dynamically assess en
terprises’ carbon “price tolerance walls” under Low-Carbon Following, 
Business-As-Usual, and Economic Following scenarios to further adjust 
the carbon quota allocation and carbon tax rates in Hubei’s carbon 
market (Sun et al., 2024). It aims to provide market participants and 
policymakers with a standard short-term carbon price reference. 
Combining the “price tolerance wall” with forecasted trends, the gov
ernment could proactively regulate supply and demand in the carbon 
market with government intervention and enterprise alignment. The 
government could increase the supply of carbon allowances to stabilize 

the market and balance supply and demand based on the capacity of 
local enterprises. In addition, Feng et al. (2024) suggest that rising 
carbon prices stimulate both the quantity and quality of green patents 
and that reasonable carbon pricing can incentivize enterprises to invest 
in green and low-carbon initiatives. They also point out that trans
parency of information is crucial for market stability. Therefore, the 
Hubei provincial government may consider incentivizing enterprises to 
increase energy-saving efforts when carbon prices are high through tax 
incentives and subsidies, thus enhancing the carbon market’s supply 
capacity. The government could disclose province carbon trading in
formation, regularly publish market data, and further promulgate rela
tively complete carbon price risk prevention and control policies to 
establish a risk early warning and prevention and control system for 
reducing supply-demand imbalances caused by panic trading.

Third, promote carbon emission financing innovation and adjust the 
China Certified Emission Reduction (CCER) offset ratio. The average 
carbon price in China’s carbon market in June 2024 is 90.66 Yuan/ 

Fig. 18. The subsequent forecasting results of the comparison models.
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tCO2e, with fluctuations typically ranging between 90 and 100 Yuan/ 
tCO2e. However, in Hubei Province, the carbon price forecasting may 
change to 39.82–50.09 Yuan/tCO2e in the next 180 days, indicating that 
Hubei’s carbon price is significantly lower than the national average. 
This presents an opportunity for an upward adjustment in Hubei’s car
bon price. The CCER offset ratio in Hubei Province is 5% now. Consid
ering the potential future trend of the Hubei carbon market, the Hubei 
Provincial Government should further evaluate the carbon-intensive 
differentiation of different industries in the province and dynamically 
adjust the upper limits of the CCER offset ratio. Maintaining the existing 
5% offsets for carbon-intensive power, steel, and chemical industries is 
feasible, maintaining the push for deeper emissions cuts from these high- 
emissions industries. However, for high-cost industries such as service 
and forest industries with small emission reduction potential in the 
province, the government can dynamically increase the offset ratio by 
more than 5% to alleviate and balance their cost pressure. In addition, Li 
et al. (2021) validated that the financing efficiency of the carbon market 
is crucial for green development. Therefore, it is necessary to introduce 
professional financial institutions into carbon trading and establish a 
carbon market with diversified investor participation. The Hubei gov
ernment should encourage provincial financial institutions to promote 
carbon allowance mortgage loans and develop green bonds, sustainable 
development investment funds, and other financial products related to 
environmental protection and climate governance to form new local 
CCER projects. It aims to help enterprises leverage carbon assets for 
green financing. The government could further incentivize local enter
prises to engage in low-carbon transformation and clean energy in
vestment activities through such financial innovations.

Finally, the Chinese government could leverage the Hubei carbon 
market as a pilot demonstration to promote the above recommendations 
within the national ETS framework. The government could base short- 
term forecasts on projected trends in national carbon prices to deter
mine upper and lower limits for future carbon prices, establishing a 
national carbon price corridor integrating the "price tolerance wall" 
concept to maintain the stability of the national carbon market. Addi
tionally, the Chinese government could refer to Hubei’s carbon price 
forecasting and the development trends of national carbon prices to 
establish a cross-regional Market Stability Reserve within the national 
ETS framework. This cross-regional adjustment mechanism could help 
balance supply and demand across different regions. Furthermore, the 
government could draw on Hubei’s pilot experiences to construct a 
national risk management system for intensifying green and low-carbon 
financial activities and dynamically adjusting national carbon tax pol
icies, thereby enhancing the rationality and effectiveness of China’s ETS.

5. Conclusion and future studies

5.1. Conclusions

This paper considers carbon prices’ complex nonlinear and non- 
stationary characteristics and proposes a novel mixed model called 
BO-CEEMDAN-MI-CNN-LSTM-Transformer for carbon price forecasting. 
Methodologically, this study improves data decomposition and recon
struction techniques through MI regression and CEEMDAN. It applies 
the BO algorithm to combine the CNN, LSTM, and Transformer to form 
the forecasting module, extracting information features from local to 
long-term to global levels. By applying the novel mixed model to the 
Hubei Province carbon price forecasting for validity verification, this 
paper finds that, based on ablation experiments and comparisons with 
popular forecasting models, introducing the MI to reconstruct the IMFs 
could effectively enhance the computational efficiency of the mixed 
model. Furthermore, the forecasting accuracy of the proposed mixed 
model significantly surpasses that of using a single model or direct 
forecasting with raw data. The DM test and IR test indicate that the 
reasonable synergy within the mixed forecasting module based on deep 
learning allows for helpful information capture from local to global 

scales and enables effective multi-scale data handling, improving fore
casting performance. Through the 180 days following forecasting, this 
paper further reveals that, unlike long-term time series where cyclical 
and seasonal features are insignificant, Hubei’s carbon price shows 
evident cyclical fluctuations and seasonal characteristics in the short 
term, fluctuating between 39 and 50 Yuan/tCO2e. The government 
should develop dynamic and flexible regulation and incentive policies 
that conform to the short-term cycle of carbon price in Hubei Province 
and cooperate with the market mechanism to stabilize the stable oper
ation of the carbon market in Hubei.

5.2. Limitations and future studies

This paper still has some limitations that should be studied in future 
research. From the perspective of modeling limitations, the proposed 
model has preliminarily achieved effective forecasting of carbon price 
data. Nonetheless, there remains improved space for further develop
ment in the overall model framework. Currently, the proposed model 
forecasts solely from the perspective of carbon price trends, and the 
input data could be further added to enhance the model’s adaptability to 
the carbon market. Future research could incorporate diversified data 
sources, such as market complexity, policy changes, news indices, and 
other relevant factors, to reduce the impact of market uncertainties and 
enable multi-scale forecasting. It would provide a foundation for diverse 
scenario forecasting and yield more comprehensive results. For the 
reconstruction of IMFs, this paper preliminarily determines a trade-off 
between feature retention and noise reduction by MI and sample en
tropy. However, the optimal trade-off between them still needs to be 
determined. Therefore, this paper may further consider the interactive 
relationship between feature loss and noise reduction in future work. 
Based on the demand scenarios focusing on noise reduction or feature 
retention, this paper will further explore the proposed model with the 
optimal trade-off between noise reduction and feature loss to improve 
forecasting performance. Additionally, the proposed model’s forecasting 
architecture, which consists of CNN, LSTM, and Transformer, could be 
further replaced, optimized, and supplemented to enhance overall 
forecasting performance. This paper preliminarily discusses the roles of 
the relative effectiveness of CNN and Transformer in different noise 
levels through simulation experiments. However, the applicability of 
these modules to different features of various data sets remains to be 
demonstrated. The following research may conduct more empirical ex
periments around CNN and Transformer to further explore their relative 
effectiveness in role shifts at different noise levels through testing. 
Future work could continue from this perspective to optimize the inte
gration patterns of each module and enhance the integration frame
work’s forecasting potential. Meanwhile, this paper suggests that future 
research could further integrate frontier deep learning techniques, such 
as TFT, to replace the single LSTM and Transformer modules in the 
proposed forecasting architecture. Future research could focus on 
developing novel carbon price forecasting models by incorporating TFT 
with decomposition and reconstruction modules, integrating additional 
deep learning components, and utilizing advanced optimization 
algorithms.

From the perspective of application limitations, this paper needs to 
enhance further the applicability and generalizability of Hubei’s carbon 
price forecasting results to other regions in China and globally. Carbon 
markets in different regions exhibit unique and regional variations in 
economic environments, policy changes, and industrial structures. 
Although the proposed model is adapted to the carbon price develop
ment in Hubei Province, there remain limitations in directly applying it 
to other regions. Therefore, in future research, this paper would further 
incorporate regional differences in policy, market, and economic con
ditions to optimize and adjust the proposed model’s structure and pa
rameters, making it adaptable to the characteristics of China’s other 
regions to provide reasonable support for their formulation of economic 
policies for regional carbon markets.
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Considering China’s overall carbon reduction goals of peaking car
bon emissions by 2030 and achieving carbon neutrality by 2060, 
although this paper presents a reference mixed model for carbon price 
forecasting, the model’s capacity for handling high-dimensional data for 
long-time-span forecasting still requires further enhancement. The 
proposed model demonstrates effective short-term forecasting of 180 
days, but the period is considerably shorter than the target period of 
2030 and 2060. Therefore, this paper could incorporate the conditions 
of China’s regional low-carbon development and further optimize the 
LSTM and Transformer modules in the model, specifically for capturing 
long-term and global features in the future. The future work aims to 
improve the model’s ability to extract long-time-span trends, expand the 
forecasting period and time, and ultimately provide scientific guidance 
for carbon reduction from the carbon price and carbon market man
agement perspective to support China’s dual carbon goals in 2030 and 
2060.
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