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performance in China has gained tremendous interest. In this paper, the ~ Accepted 28 July 2021
GTI activities are split into two components: the green technology R&D

: . KEYWORDS
(GTR) stage and the technology achievement transformation (TAT) Green technology
stage. While doing so, we consider the time lag of the GTI process and innovation; network EBM
managerial disposability of the undesirable output. The combination of model; meta-frontier
the network epsilon-based measure (EBM) model and meta-frontier Malmaquist-Luenberger
Malmquist-Luenberger (MML) index constitutes a comprehensive index; data envelopment
analytical framework for evaluating the regional GTI performance in analysis
China. This study’s empirical results indicate that: (1) China’s overall
average efficiency of GTI (0.817) is between the efficiency of GTR (0.725)
and the efficiency of TAT (0.929); (2) the average efficiencies in the GTR
stage fluctuate considerably, with average efficiencies relatively high
and constant in the TAT stage; (3) technological progress is the key
element which contributes to improvements in the MML index of
overall and sub-process GTI; and (4) from a national perspective, the
MML index of the overall GTI varies from 0.980 to 1.128 each year, with
an average annual growth of 2.8%.

1. Introduction

China has entered into a new normal economic development, and at this stage, effectively maximis-
ing the distribution of innovation resources and enhancing innovation efficiency are key issues
facing China’s implementation of innovation-driven strategy. The effective way to overcome
resource and environmental constraints is through green technology innovation (GTI) (Du, Liu,
and Diao 2019). GTI takes into account the problems of resources and ecological environment,
which is a distinctive feature different from traditional technological innovation (Wang, Xie, and
Yang 2017). Therefore, it is still of considerable theoretical and practical importance to enrich the
tools to evaluate innovation efficiency and to examine the key driving factors influencing innovation
efficiency.

Initially introduced by Charnes, Cooper, and Rhodes (1978), data envelopment analysis (DEA) is a
nonparametric linear programming technique, which can be used to analyse the relative efficiency of
decision making units (DMUs) with multiple outputs and inputs. As a common data-driven tool, DEA
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has been adopted by a variety of scholars to analyse efficiency in different fields (Emrouznejad and
Yang 2018), especially in evaluating innovation performance. Each DMU is known as a ‘black box’ in
traditional DEA models, in which the intermediary phases between inputs and outputs are ignored.
As for the network structure, Cook, Liang, and Zhu (2010) reviewed two-stage network models and
discussed future perspectives and challenges.

Related research on measurement-oriented technology innovation activities are burgeoning in
the literature. However, different network DEA models may only apply to specific situations. Thus,
how to construct a network DEA model to simulate the GTI process effectively is an important
issue. Another concern is that previous researchers mainly focused on technology innovation
efficiency, neglecting ‘green’ factors (Wu, Wang, and Qian 2020). Thus, how to integrate undesirable
outputs into the GTI process properly is a second important issue. Besides, at the regional level, the
subgroups of China exist in various group-specific production technologies, which could not be
comparable, due to unbalanced regional growth (Li et al. 2017). Thus, a third important issue is
how to investigate the main driving factors and regional technology gap synthetically.

We establish a two-stage network epsilon-based measure (NEBM) model that includes initial
inputs, free intermediate outputs, additional intermediate inputs, desirable outputs, and undesirable
outputs. To account for regional heterogeneity and the time lag of the network structure, the meta-
frontier Malmquist-Luenberger (MML) index is used to empirically study the main driving factors and
regional technology gap of GTI activities in China. The research contributions are mainly embodied
in the following four aspects.

First, we provide an evaluation framework incorporating a complicated internal structure and
undesirable outputs to study the GTI efficiency of regions in China during the ‘12th Five-Year
Plan (2011-2015)’ period. Second, we empirically assessed and decomposed the GTI efficiency
using the NEBM model with managerial disposability. Third, we compared various network DEA
models, such as the traditional two-stage DEA, network CCR (NCCR), network slack-based measure
(NSBM), and NEBM model. Fourth, the productivity change and technical gap ratio was evaluated
by MML index, considering the regional heterogeneity and time lag.

The remainder of this paper is structured as follows. In Section 2, we review the relevant literature.
Methodology is provided in Section 3, and we describe the network structure, data, and variables in
Section 4. In Section 5, we present the empirical results and discussions. Finally, we conclude this
paper in Section 6.

2. Literature review
2.1. Research on network DEA and the MML index

Two-stage DEA modelling helps to determine DMU’s overall efficiency and corresponding stage
efficiencies. Thus, specific internal information stored in the network structure may also be identified.
After the formation of multiplicative model with the two-stage (Kao and Hwang 2008), a multi-period
two-stage DEA model was proposed to consider the operations of individual periods (Kao and
Hwang 2014). In addition, Chen et al. (2009) established a two-stage additive DEA method. Then,
Cook et al. (2010) introduced a general network structure based on the two-stage additive
modelling.

However, radial models, considering proportional changes, deviate from most practical oper-
ations and disregard input or output slacks. As non-proportional changes could exist in inputs
and outputs, Tone and Tsutsui (2009) suggested a network SBM technique with slack variables to
measure efficiency. For a two-stage method that recognises undesirable outputs, Fukuyama and
Weber (2010) suggested a slack-based inefficiency measure. However, these models are not suitable
where problems require simultaneous analysis of the radial and non-radial inputs and outputs. The
network EBM model was proposed by Tavana et al. (2013) to integrate radial and non-radial
approaches into a single system. However, the NEBM model does not take the indicator of
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undesirable outputs into account. Then, Cui and Li (2018) introduced the NEBM model with manage-
rial disposability.

Many researchers have investigated innovation efficiency and analysed the growth rate in China,
but the heterogeneity of DMUs does not take into account and assumes that the same production
frontier are suitable for all DMUs. A main analytical paradigm has been developed by O’Donnell, Rao,
and Battese (2008), where the meta-frontier can be calculated by nonparametric and parametric
approaches. Oh and Lee (2010) introduced the meta-frontier Malmquist approach, which can incor-
porate the technology heterogeneity and depict the technology gap. On this basis, Oh (2010) pro-
posed the MML index, which handles undesirable environmental factors.

2.2. Research on Green technology innovation

The evaluation of innovation activities attracts significant interest from researchers, and owing to its
benefits, DEA has been widely adopted (Xiong, Yang, and Guan 2018). A two-stage dynamic network
DEA approach incorporating shared outputs was proposed by An et al. (2020) to evaluate the per-
formance of high-tech industries. Chen, Liu, and Zhu (2018) introduced a conceptual model to esti-
mate the GTI for high-tech industries. Zhang, Luo, and Chiu (2019) employed the Russell multi-
activity network DEA model to appraise the innovation performance of high-tech industries.
Using a two-stage DEA approach, Liu et al. (2019) investigated R&D performance of industrial
enterprises.

However, prior research efforts have mainly focused on technology innovation efficiency and
neglected the ‘green’ factors. There are various approaches based on different criteria for the hand-
ling of undesirable outputs. In specific, managerial disposability means that the DMU increases input
consumption in order to maximise desirable outputs and at the same time minimise unnecessary
outputs. In evaluating DMU adaptive behaviours to adjustments in the environmental regulations,
the managerial disposability must be taken into account.

As for the evaluation of GTI efficiency, scholars conducted a great deal of research based on
different modelling tools. Du, Cheng, and Yao (2021) explored the heterogeneous impacts of
environmental regulation on GTI and industrial structure. In strategic emerging industries, Sun,
Miao, and Yang (2017) explored the ecological-economic performance of GTI. A stochastic frontier
analysis was carried out by Miao et al. (2017) to study GTI’s effect on the usage of natural resources.

In addition, many scholars use DEA models to investigate GTI efficiency. Wang et al. (2017) studied
the unified green innovation performance by using DEA-RAM model. Lin et al. (2018) adopted DEA
window analysis approach to measure the GTI efficiency. Luo et al. (2019) investigated strategic
emerging industries’ GTI efficiency by using the Malmquist-DEA index.

2.3. Summary of the literature review

In view of the network production structure existing in real life, we are required to determine a
reasonable evaluation method according to the situation of specific problems. Although the
network DEA approach is commonly adopted in the evaluation of GTI, no studies consider the
network EBM model with managerial disposability to deal with the undesirable outputs. Therefore,
it is of great significance to combine the network DEA model with managerial disposability for the
assessment of regional GTI in China.

Also, no studies introduce regional heterogeneity into the network structure. Regional advan-
tages, resource endowments and institutional systems of different regions in China are different.
It is easy to form regional technical barriers, which affect the speed of technology diffusion, and
make the GTI sets of different regions have differences, that is, the frontier of production technology
has differences. Therefore, if different production frontiers are used in different regions, there will be
a lack of common reference standards between regions.



TECHNOLOGY ANALYSIS & STRATEGIC MANAGEMENT . 1435

3. Methodology
3.1. Network EBM model

A unifying model for integrating radial as well as nonradial features was proposed by Tone and
Tsutsui (2010). The non-oriented EBM model is constructed as follows, given the constant returns
to scale.

mow:s:;
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In this model, x; and y,; represent the i-th input and the r-th output of DMU;, respectively. The
number of DMUs, outputs, and inputs are represented by n, s and m, respectively, and s; and s,+
are the slacks of the i-th input and the r-th output. The parameters A; are the intensity variables. Par-
ameters w;~ and w;- model the relative importance of input i and output r, and satisfy Y ;" , w7 =1
and Y °_, w =1, with w7 > 0 and w;” > 0. The higher the affinity degree between inputs and
outputs is, the more weight is allocated. Parameters g, and g, can integrate the radial and nonradial
slack models, and should be given in advance. The equality &, = &, = 0 implies that the EBM model
is a CCR model, while &, = g, = 1 implies that the EBM model is an SBM model.

The traditional EBM model makes no claims as to the internal functioning of the DMU (Deng and
Yan 2019). While in network DEA, the performance of each stage can be evaluated by specifying all
stages in sub-DMUs. Figure 1 illustrates the structure of two-stage network model.

On the basis of the traditional two-stage network SBM model, Tavana et al. (2013) proposed the
network EBM model, which took into account both the proportion improvement of CCR model and
the slack improvement of SBM model. The network EBM model proposed by Tavana et al. (2013) is
constructed as follows.
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DMUO Additional inputs

Xk Desirable outputs

Vi

Initial inputs Intermediates

Stage 1
(Sub DMU1)

Stage 2
(Sub DMU2)

Undesirable outputs
U

Figure 1. Two-stage network structure.

In this model, H is the number of the divisions and x{} and yf} represents the i-th input and r-th
output of DMU; of division h, respectively, while mj, and s, denote the number of the inputs and
outputs of division h, respectively. The parameter z*" denotes the intermediate measures
between division k and division h, and /, stands for the number of the intermediate measures of div-
ision h. Parameter W), denotes the weight of division h. The relative importance of inputiand output
rin division h are denoted by wh= and wi*, which satisfy 7" wh= = 1and 30", wh* =1, wh~ >0
and w* > 0.Finally, & and sy are the parameters of division h that can integrate the radial and non-
radial slack models.

According to the study of Cui and Li (2018), the network EBM model with managerial disposability
is constructed as follows.
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In this model, H is the number of the divisions. The parameters x, yg and u’;j represent the j-th
input, r-th desirable output, and the p-th undesirable output of DMU; of division h, respectively. The
parameters my, s, and p, denote the number of the inputs, desirable outputs, and the undesirable
outputs of division h, respectively. Parameter z&” denotes the intermediate measures between div-
ision k and division h. Parameter W}, stands for the weight of division h and is determined by the
decision-maker. The parameter W’;‘ is the importance degree of undesirable output p, while par-
ameter Wth is the importance degree of the input and desirable output in division h. They satisfy

2w h=L g and Y wie =1, wh™ > 0 and wjf > 0. Based on the dispersion degree, par-
ameters eh and &f xy are determlned and they allow this model to comblne the radial and nonradial

slack models Cui and Li (2018) also provided the steps to determine s f}y, WS*, and W)’(’;
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By changing it into a linear programme, Model (3) can be solved with the transformation of
Charnes and Cooper (1962). The undesirable outputs are parts of stage 2 instead of stage 1. Thus,
for the NEBM model, the efficiency is determined as follows for each division.

mh W.
—ey
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3.2. Meta-frontier Malmquist-Luenberger index

All DMUs are classified into K groups, and feasible input-output combinations of DMUs in each group
G belong to the same technology set. Oh (2010) developed the MML index and divided the bench-
mark technology set (BTS) as follows.

1. The contemporaneous BTS of group Gy in period t is defined as
ng = {(x!, y', u')|x'canproduce(y’, u')}, t =1, ..., T. This set contains all the observations of
group G only in period t. It represents a production technology consisting of production frontiers
containing all DMUs of the group at the same time.

2. The inter-temporal BTS of group Gy is defined as P, = ng U ng .U ng. This set includes all
observations of group Gy in all the periods. It denotes that DMUs of the group in different
periods are put together to construct production frontiers, and then the technical efficiency of
each DMU in each period is calculated according to this production frontiers.

3. The global BTS is defined as P° = P U P ... U P . This set includes all observations of all
groups in all the periods. It represents all periods of all DMUs as reference production frontiers,
and then calculates the technical efficiency in different periods of each region.

According to the study of Oh (2010), the MML index can be decomposed into the EC index, the
best practice gap change (BPC) index, and the technical gap ratio change (TGRC) index with the fol-
lowing equation.

14 DO, yt, uh)
t t+1 41y
MMLE (¢, yf uf, X y T ut ) = 1+ DG(xtHT, ytHl yttT)
14D (X, yt, uf) (1 + D', v, uD)/( + DY, yt, uh))

= 1+ pc! (Xr+1, yt+1’ ur+1) X 1+ D’(X[‘H, yt+1’ ut+1))/(1 + pct! (th yr, ut))

(D00 y, u)/(0 + D6,y u)
(1 + DO, yt+1, ut+) /(1 + DI(x, yt, uh))
TEt+1 BPRT+1 TGRI‘+1
T 7E T TBPRT CTGR
In the above equation, TE! represents technical efficiency in period t, and BPR! represents the best
practice gap ratio between best practice frontier and inter-temporal best practice frontier. TGR' rep-
resents the technical gap ratio in period t, meaning the gap between inter-temporal technology and

global technology. If TGR! = 1, then the DMU is on the meta-frontier for innovation technology in
period t. The explanations of EC, BPC, and TGC are given in detail as follows.

(6)

= ECt,, x BPC!,, x TGC!,,
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1. EC represents the technical efficiency change during two periods, reflecting relative change rate
when DMUs move to the contemporaneous benchmark technology frontier during period tto t + 1.

2. BPC represents the change of the best practice gap ratio during two periods, reflecting technical
change.

3. TGCis the change of technical gap ratio between inter-temporal and global benchmark technol-
ogy frontier in the two periods. TGC reflects the technical catch-up effect of DMUs.

4. Data and variables
4.1. Network structure

This paper evaluates the GTI efficiency of 30 provinces (we use ‘province’ to cover autonomous
regions and municipalities also) based on panel data from 2011 to 2017. Due to the lack of
details, this work does not include Tibet, Taiwan, Hong Kong and Macao. Figure 2 illustrates the indi-
cator system. Table 1 describes the indicators in detail and its corresponding notations. Data are col-
lected from China Science and Technology Statistical Yearbook, China Statistical Yearbook, China
Energy Statistical Yearbook and China Environment Statistical Yearbook.

4.2. Data processing

To represent R&D capital stock, the consumer price index (CPl) and producer price index (PP/) of each
province are adopted to generate the R&D price index. Also, when analysing two-stage network
operations, time lags are critical to be addressed. Reflecting the two-stage phase of GTI, this study
follows Chen, Liu, and Zhu (2018) and Wang et al. (2020) in considering a two-year lag for the GTI
process.

The flow data of R&D expenditure in the GTI activities can be supplemented by the stock data,
which is estimated by the perpetual inventory method. Formula (7) is used to estimate R&D
capital stock. For the calculation of the base period R&D capital stock, the Formula (8) is adopted.

Kr = (1 - B)K[_‘| + E[_1 (7)
Eo

K = 8

T g+9) ®)

It should be noted that the expenditure for technical transformation is a comprehensive indicator.
To clarify the index structure, the entropy method is used to integrate the dedicated inputs into one
indicator. In consideration of the fact that no official statistics on each province’s CO, emissions have

Initial input Intermediate & additional input Desirable & undesirable output
(T th year) (T+1 th year) (7+2 th year)

! <)
| [©]
| Expenditure on new
! _ Time lag Number of patent products
1 e x
R&D intramural i e applications development
. : principal business

Number of
i inventions in force i

; i Industrial CO,

| 1 emissions
equivalent i ~ Number of new Expenditure for )

1 Network roducts hnical : i

| i p! technical Industrial pollutant

structure i ! issi
: P transformation i emission
o
g |

Sales revenue of
new products

Revenue from

Technolo;
Green technology . 8y
achievement
R&D stage .
R&D personnel transformation stage

full-time

23

Stage 1:

}—» Green technology ec| gy achievement

R&D process transformation process

Figure 2. A two-stage production structure of the green technology innovation process.
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Indicator Type Unit Notation
R&D intramural expenditure Initial input 10 thousand CNY Exp.
R&D personnel full-time equivalent Person Per.
Number of patent applications Intermediate Piece Pat.
Number of inventions in force Piece Inv.
Number of new products Item Pro.
Expenditure on new products development Additional input 10 thousand CNY Dev.
Expenditure for technical transformation 10 thousand CNY Tra.
Sales revenue of new products Desirable output 10 thousand CNY Sal.
Revenue from principal business 100 million CNY Bus.
Industrial CO, emissions Undesirable output 10 thousand tons Car.
Industrial pollutant emission 10 thousand tons Pol.

yet been released, this paper uses the reference framework set out in the 2006 IPCC Guidelines to
estimate CO, emissions. The details are given in Formula (9) can refer to Du, Liu, and Diao (2019).

8
44
Co, = ; EN; x NCV; x CEF; x COF; x (ﬁ) 9)

Besides, we select five environmental pollution indicators (industrial SO,, nitrogen dioxide, smoke
and dust, wastewater, and solid wastes) and exploit the entropy method to calculate the regional

pollutant emissions.

4.3. Indicator description

Table 2 provides the descriptive statistics for initial input, intermediate, additional input, desirable
and undesirable outputs during 2011-2017. The Pearson correlation coefficients are presented in
Table 3. The majority of coefficients between input and output indicators are positive and compara-
tively high, maintaining a close relationship between inputs and outputs. The coefficients between
Car. and Pat., Inv., Pro. are relatively low, but in keeping with the variable selection of existing papers
(Du, Liu, and Diao 2019; Qian, Wang, and Xiao 2018), we still choose these indicators.

5. Empirical analysis
5.1. Comparison of different network DEA models

Table 4 and the last column of Table 5 list the efficiencies evaluated by the NCCR, NSBM, NEBM, and
two-stage DEA models (Kao and Hwang 2008). The two-stage DEA produces a radial measure
without considering the additional inputs. Thus, the result of the two-stage DEA differs significantly

Table 2. Descriptive statistics of the indicators from 2011 to 2017.

Variable Mean Std.dev. Min Max Median

Exp. 82843.12 107354.32 1285.00 457342.00 47670.50
Per. 411419.16 515900.54 8307.23 2462883.23 245589.67
Pat. 20182.38 30305.89 168.00 199293.00 9838.50
Inv. 16855.56 34103.84 87.00 289238.00 6141.00
Pro. 11998.79 16516.91 94.00 103149.00 7082.50
Dev. 2160789.53 2747251.39 28780.42 11824447.00 1116787.53
Tra. 281780.57 248519.54 2601.47 1368327.27 205936.53
Sal. 31778181.30 38625597.01 71661.55 148421107.00 21443673.49
Bus. 26483.65 26308.11 1351.90 107030.09 17053.90
Car. 38160.90 25833.91 4664.09 146787.32 31523.92

Pol. 36975.77 28074.82 3285.15 144506.66 30558.48
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Table 3. Input-output correlations.

Pat. Inv. Pro. Sal. Bus. Car. Pol.

Exp. 0.945 0.876 0.925

Per. 0.966 0.841 0.955

Pat. 0.918 0.838 0.442 0.843
Inv. 0.775 0.701 0.367 0.782
Pro. 0.938 0.866 0.492 0.820
Dev. 0.979 0.934 0.572 0.877
Tra. 0.821 0.847 0.604 0.718

Note: All correlation coefficients are statistically significant at the 1% level (2-tailed).

from the others. Besides, the overall efficiency is measured by the product of the efficiency values of
two sub-stages, which underestimates the efficiency values and makes it somewhat unreasonable.

Figure 3 displays the kernel density graphs of the model validation results. For the NCCR models,
the key shortcoming is the disregard of the effect of nonradial slacks on performance evaluation. For
the NSBM model, the projected DMU may lose the proportionality because the slack is not necess-
arily proportional to the inputs and outputs. As shown in Figure 3, the average GTI efficiencies eval-
uated by the two-stage DEA, NSBM, NEBM, and NCCR models are 0.489, 0.734, 0.817, and 0.819,
respectively.

5.2. Efficiency analysis and dynamic evolution

5.2.1. Correlations of overall and sub-process efficiencies
As there is a two-year lag exists in the GTI process, we get the overall GTI efficiencies and its stage
efficiencies from 2011 to 2015 on the basis of data obtained in the 2011-2017 timeframe. Table 5

Table 4. Green technology innovation efficiencies of different models.

Network CCR Network SBM Two-stage DEA
Province Overall Stage 1 Stage 2 Overall Stage 1 Stage 2 Overall Stage 1 Stage 2
Beijing 1.000 1.000 1.000 1.000 1.000 1.000 0.350 0.981 0.357
Tianjin 0.857 0.713 1.000 0.838 0.675 1.000 0.694 0.937 0.754
Hebei 0.754 0.516 0.994 0.724 0.489 0.953 0.513 0.634 0.807
Shanxi 0.522 0.343 0.744 0.316 0.302 0.430 0.338 0.665 0.516
Inner Mongolia 0.627 0.255 1.000 0.621 0.241 1.000 0.861 0.861 1.000
Liaoning 0.791 0.582 1.000 0.605 0.529 0.629 0.444 0.609 0.728
Jilin 1.000 1.000 1.000 1.000 1.000 1.000 0.299 0.613 0.518
Heilongjiang 0.477 0.352 0.662 0.281 0.235 0.418 0.364 0.885 0.407
Shanghai 0.917 0.834 1.000 0.890 0.780 1.000 0.486 0.653 0.734
Jiangsu 0.860 0.720 1.000 0.845 0.691 1.000 0.610 0.610 1.000
Zhejiang 1.000 1.000 1.000 1.000 1.000 1.000 0.293 0.608 0.440
Anhui 1.000 1.000 1.000 1.000 1.000 1.000 0.306 0.652 0.515
Fujian 0.749 0.512 0.989 0.686 0.429 0.899 0.485 0.598 0.820
Jiangxi 0.895 0.789 1.000 0.884 0.768 1.000 0.596 0.699 0.897
Shandong 0.799 0.597 1.000 0.773 0.547 1.000 0.713 0.713 1.000
Henan 0.688 0.376 1.000 0.673 0.346 1.000 0.609 0.668 0.927
Hubei 0.705 0.554 0.888 0.598 0.489 0.757 0.495 0.560 0.889
Hunan 0.789 0.664 0.936 0.583 0.585 0.587 0.341 0.371 0.942
Guangdong 1.000 1.000 1.000 1.000 1.000 1.000 0.413 0.940 0.430
Guangxi 0.652 0.665 0.729 0.437 0.440 0.503 0.478 0.620 0.786
Hainan 1.000 1.000 1.000 1.000 1.000 1.000 0.557 0.679 0.878
Chongging 0.979 0.959 1.000 0.975 0.949 1.000 0.322 0.495 0.614
Sichuan 0.999 0.997 1.000 0.989 0.979 1.000 0.241 0.697 0.336
Guizhou 0.698 0.769 0.731 0.467 0.722 0.441 0.699 0.814 0.847
Yunnan 0.870 0.903 0.885 0.681 0.832 0.671 0.435 0.923 0.497
Shaanxi 0.624 0.598 0.729 0.418 0.546 0.476 0.672 0.751 0.855
Gansu 0.763 0.546 0.984 0.609 0.484 0.756 0.322 0.629 0.541
Qinghai 0.938 0.875 1.000 0.932 0.863 1.000 0.364 0.779 0.509
Ningxia 0913 0.893 0.952 0.712 0.773 0.688 0.679 0.964 0.688

Xinjiang 0.703 0.777 0.733 0.487 0.538 0.572 0.712 0.805 0.874
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Table 5. Green technology innovation efficiencies of 30 provinces in China.

Province/Year 2011 2012 2013 2014 2015 Average
Beijing 1.000 1.000 1.000 1.000 1.000 1.000
Tianjin 0.866 0.896 0.892 0.826 0.801 0.856
Hebei 0.741 0.738 0.791 0.773 0.726 0.754
Shanxi 0.505 0.570 0.510 0.490 0.515 0.518
Inner Mongolia 0.627 0.647 0.619 0.622 0.622 0.627
Liaoning 0.754 0.829 0.801 0.728 0.831 0.788
Jilin 1.000 1.000 1.000 1.000 1.000 1.000
Heilongjiang 0.437 0.487 0.505 0.480 0.454 0.472
Shanghai 0.896 0.924 0.937 0.928 0.896 0.916
Jiangsu 0.901 0.851 0.849 0.866 0.831 0.859
Zhejiang 1.000 1.000 1.000 1.000 1.000 1.000
Anhui 1.000 1.000 1.000 1.000 1.000 1.000
Fujian 0.716 0.731 0.753 0.749 0.789 0.747
Jiangxi 0.754 0.877 0.910 0.931 1.000 0.894
Shandong 0.753 0.813 0.821 0.820 0.782 0.798
Henan 0.662 0.724 0.692 0.693 0.667 0.688
Hubei 0.669 0.699 0.714 0.709 0.722 0.703
Hunan 0.819 0.801 0.761 0.786 0.747 0.783
Guangdong 1.000 1.000 1.000 1.000 1.000 1.000
Guangxi 0.562 0.726 0.651 0.619 0.672 0.646
Hainan 1.000 1.000 1.000 1.000 1.000 1.000
Chongqing 0.926 0.970 1.000 1.000 1.000 0.979
Sichuan 1.000 1.000 0.999 1.000 0.992 0.998
Guizhou 0.712 0.686 0.672 0.703 0.697 0.694
Yunnan 0.802 0.779 0.742 1.000 1.000 0.865
Shaanxi 0.734 0.676 0.620 0.537 0.530 0.620
Gansu 0.789 0.778 0.820 0.724 0.675 0.757
Qinghai 1.000 1.000 1.000 0.687 1.000 0.937
Ningxia 1.000 0.908 0.891 0.956 0.767 0.904
Xinjiang 0.623 0.725 0.709 0.770 0.667 0.699

shows the average GTI efficiencies. We can also derive the average green technology R&D (GTR)
efficiencies, and average technology achievement transformation (TAT) efficiencies of each year
from 2011 to 2015.

Table 6 shows the Spearman rank correlation tests. The significant correlations suggest that
overall efficiency is linked to the two-stages and also indicate that overall efficiency is more con-
nected with stage 1 than to stage 2. That means the GTR stage, which is in line with the analysis
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Figure 3. Kernel density graphs of the evaluation results of different models.
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Table 6. Spearman rank correlation tests of overall and sub-process efficiencies.

Efficiency Overall Stage 1 Stage 2
Overall 1.0000

Stage 1 0.8987*** 1.0000

Stage 2 0.7107%*** 0.4543%** 1.0000

Note: ***Indicates that correlations are statistically significant at the 1% level (2-tailed).

of Du, Liu, and Diao (2019) and Qian, Wang, and Xiao (2018), is the major cause for inefficiency in the
GTI process. That is, the GTR stage has a greater capacity for quality gain in the provinces of China,
although the efficiency of the TAT stage is also important. The lower values and the weaker statistical
significance for the association between the two sub-stages mean that the two sub-stages are not
statistically related.

5.2.2. Distributions of overall and sub-process efficiencies

The average overall efficiencies for each province are derived from the results listed in the last
column of Table 5 and illustrated in Figure 4. We divide the average overall efficiency values into
four intervals, tagged as efficient values (equal to 1.00), high-efficiency values (between 0.80 and
0.99), medium-efficiency values (between 0.60 and 0.79), and low-efficiency values (less than 0.60).

Seeing from Figure 4, the average overall GTI efforts of Beijing, Jilin, Anhui, Zhejiang, and Guang-
dong are efficient, which means they have optimal performance in GTI activities. In contrast, Shanxi
and Heilongjiang are comparatively poor in terms of overall GTI efficiencies, which indicates these
two provinces face severe inefficiency in their GTI activities.

To analyse the specific reasons for inefficiency in terms of regional GTI activities in China, Figure 5
shows a scatter diagram based on the average values of the GTR efficiencies (0.725) and the TAT
efficiencies (0.929) of the 30 provinces. The scatter diagram is divided into four quadrants, tagged
as I, I, I, and V.
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Figure 4. Average value of the overall efficiencies of 30 provinces in China.
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5.2.3. Variations of overall and sub-process efficiencies
Considering the geographical location and economic development, we divide the provinces into
Eastern, Central and Western regions according to the Chinese government’s official definition.
Figure 6 reveals the variations of the average GTl efficiencies, GTR efficiencies, and TAT efficiencies
in the divided three regions. It is concluded that the eastern region has relatively high average
overall and sub-process efficiencies, while the central region and western region have relatively
low overall and sub-process efficiencies. However, we note disparities between the central and
western areas, given the efficiencies of the sub-process. These findings are generally consistent
with the geographic distribution of the degree of economic growth (Liu et al. 2019).
The average GTl efficiency in the overall region (i.e. China) (0.817) is between the GTR efficiency
(0.725) and the TAT efficiency (0.929). As presented in Figure 6(b) and (c), the average efficiencies of
the GTR stage are greatly fluctuating, with comparatively high and stables average efficiencies in the
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Figure 6. Variation of average efficiencies for regions.
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Table 7. MML index of overall and two stages.

Stage Region 2011-2012 2012-2013 2013-2014 2014-2015
GTI Overall 1.009 0.980 1.001 1.128
Eastern 0.971 0.985 0.990 1.110
Central 1.074 0.935 1.014 1.076
Western 0.998 1.006 1.003 1.183
GTR Overall 1.080 0.963 0.964 1.249
Eastern 0.981 0.993 0.963 1.170
Central 1.246 0.887 1.000 1.183
Western 1.058 0.989 0.939 1.376
TAT Overall 0.989 0.999 1.015 1.064
Eastern 0.974 0.990 1.004 1.055
Central 1.006 0.988 1.016 1.024
Western 0.992 1.017 1.026 1.104

TAT stage. The variation of average overall efficiency is mostly attributed to the GTR stage, which
contradicts the studies of Liu et al. (2019).

5.3. Meta-frontier ML index and its decomposition

5.3.1. MML index analysis of China’s GTI

This paper develops a network EBM model and then constructs the MML performance index of GTI.
Table 7 shows the MML index of regional GTI from 2011 to 2015, while Figure 7 shows the accumu-
lated MML index.

According to Table 7, the MML indexes of GTI activities in each sub-process and region are all
above 1, which indicates that there was an improvement in overall and sub-process GTI efficiencies
during 2014-2015. From the view of the whole country, the annual MML index of the overall GTI
varies between 0.980 and 1.128, with an average annual growth of 2.8%.

According to Figure 7, the MML index of GTI has risen at both the aggregate and regional levels.
The MML index has risen most in the west region, while it has improved least in the central region. As
shown in Figure 7(a), the variation of MML index in the overall GTl is well balanced. The MML index in
the GTR stage (see Figure 7(b)) fluctuates considerably, while in the TAT stage (see Figure 7(c)), it
remains highly stable.

Based on Model (6), we decompose the MML index of GTI activities into three indexes: EC, BPC,
and TGC. Decomposing the MML index provides a clearer explanation of the reasons why the GTI
performance varies dynamically.

The results in Figure 8 show that the accumulated BPC value has an obvious upward trend with
little fluctuation. The accumulated BPC values in overall GTI, the GTR stage, and the TAT stage are
1.105, 1.193, and 1.064, respectively. Thus, the change of technological progress must be the
primary explanation for the improvement of the MML index. The TGC indexes decreased slightly
in the overall GTI. The average distance between group and meta-frontier increases is obvious. A
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Figure 7. Accumulated MML index of different regions in China.
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Figure 8. National accumulated MML index and its decomposition.

sharp drop in the TGC index is shown in Figure 8(b), while a slight increase is shown in Figure 8(c).
These changes indicate that the technological catch-up effect is obvious in the TAT stage.

5.3.2. Regional MML index decomposition and comparison

GTI operations have diverse characteristics because of their geographic heterogeneity, as do the
factors that cause GTI’s dynamic shifts. As shown in Figure 9, technological progress changes are
the key factors that lead to improving the MML index of the overall and sub-process GTI in
eastern region. The accumulated technological catch-up effect increases in the overall and sub-
process GTI, especially in the GTR stage. The increase is seen by reducing the average distance in
GTR stage between the group and meta-frontier. This change also affects the technological catch-
up effect in the overall GTI. Also, the accumulated technical efficiency changes decrease in the
overall and sub-process GTI, especially in the GTR stage. These changes indicate that improving
the managerial level of GTI activities is also vital, especially the management of R&D activities.

As shown in Figure 10, technological progress changes are the key factors that lead to improving
the MML index of the overall and sub-process GTI in central region. The accumulated technological
catch-up effect decreases in the overall and sub-process GTI, especially in the GTR stage. The
decrease is suggested by the expansion of the average distance in the GTR stage between group-
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Figure 9. Eastern region accumulated MML index and its decomposition.
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Figure 10. Central region accumulated MML index and its decomposition.
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Figure 11. Western region accumulated MML index and its decomposition.

boundary and meta-boundary. This change also affects the technological catch-up effect in the
overall GTI. Also, the accumulated technical efficiency changes increase in the GTR stage, while
they decrease in the TAT stage. These changes indicate that improving the managerial level in
the TAT stage is essential.

As shown in Figure 11, technological progress changes are the key factors that lead to improving
the MML index of the overall and sub-process GTI in western region. The variations of accumulated
technological progress changes and accumulated technical efficiency changes are symmetrical in
overall and sub-process GTI. They fluctuate greatly in the study period and reach a higher accumu-
lated value compared to the initial value. This change indicates that the technical and managerial
levels improved slightly. Besides, the accumulated technological catch-up effect increases in the
TAT stage, while it decreases in the GTR stage. These changes show that, in the GTR stage, the
average distance between group and meta-frontier expands and in the TAT stage narrows.

6. Conclusions

This paper builds a comprehensive analytical framework for provincial GTI activities in China from an
efficiency evaluation and productivity change viewpoint. Regional GTI efficiency and productivity
change during ‘12th Five-Year Plan (2011-2015)" period is evaluated using the new framework.
This paper draws the following conclusions from previous findings and study.

1. The findings suggest that relying on a single sub-process is not necessary to increase overall per-
formance. It is realistic to open up internal structures and explore the causes of inefficiency in the
process of GTI.

2. The Spearman rank correlation tests show that the overall efficiency is linked to performance in
the two sub-processes. The GTR stage is the main explanation of inefficiency in the GTI process.
The analysis also proves that the efficiencies of the two sub-processes may diverge significantly;
one sub-process is often much more efficient than the other.

3. The eastern region has relatively high average overall and sub-process efficiencies, while the
central and western region are relatively low. The average efficiencies in the GTR stage
fluctuate greatly, while in the TAT stage, the performance are comparatively high and remain
stable.

4. Overall and sub-process GTI efficiency improved significantly in 2014-2015. The major factor con-
tributing to the improvement of the MML index in overall and sub-process GTl was technological
progress. It indicates the contemporaneous benchmark technology frontier shifts to the intertem-
poral benchmark technology frontier.

This research has drawbacks, but they can be important reference points for future work. Firstly,
this paper does not consider the competition of regional innovation system and its subsystems,
because the investment of innovation resources is limited, there must be competition relationship.
By introducing game theory, the relationship between GTR and TAT stage could be well measured.
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Secondly, this paper ignores the modelling of shared correlation inputs in network production struc-
tures, which can be considered for further study in the future. Thirdly, this study ignores regional
factors such as industrial structure, geographical location, population, and infrastructure construc-
tion, which may greatly affect GTI efficiency. In the future, we can further explore the influence of
external factors on regional GTI efficiency and total factor productivity.
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